Search results
Results from the WOW.Com Content Network
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...
The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic Solar System tests of general relativity. Radar signals passing near a massive object take slightly longer to travel to a target and longer to return than they would if the mass of the object were not present.
Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them (special relativity), or a difference in gravitational potential between their locations (general relativity). When unspecified, "time dilation" usually refers to the effect due to velocity.
In consequence, if mass–energy is a source of gravity, momentum must also be a source. The inclusion of momentum as a source of gravity leads to the prediction that moving or rotating masses can generate fields analogous to the magnetic fields generated by moving charges, a phenomenon known as gravitomagnetism. [12] Figure 5–7.
Over time these deconditioning effects can impair astronauts' performance, increase their risk of injury, reduce their aerobic capacity, and slow down their cardiovascular system. [58] As the human body consists mostly of fluids, gravity tends to force them into the lower half of the body, and our bodies have many systems to balance this situation.
In order to map a body's gravitational influence, it is useful to think about what physicists call probe or test particles: particles that are influenced by gravity, but are so small and light that we can neglect their own gravitational effect. In the absence of gravity and other external forces, a test particle moves along a straight line at a ...
The effect of gravity on light was then explored by Johann Georg von Soldner (1801), who calculated the amount of deflection of a light ray by the Sun, arriving at the Newtonian answer which is half the value predicted by general relativity. All of this early work assumed that light could slow down and fall, which is inconsistent with the ...
Diagram regarding the confirmation of gravitomagnetism by Gravity Probe B. Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity.