Search results
Results from the WOW.Com Content Network
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]
Programming languages that implement matrices may have easy means for vectorization. In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well.
matrix is symmetric matrix.; matrix is persymmetric matrix, i.e. it is symmetric with respect to the northeast-to-southwest diagonal too.; Every one row and column of matrix consists all n elements of given vector without repetition.
In mathematics, especially in linear algebra and matrix theory, the commutation matrix is used for transforming the vectorized form of a matrix into the vectorized form of its transpose. Specifically, the commutation matrix K (m,n) is the nm × mn permutation matrix which, for any m × n matrix A, transforms vec(A) into vec(A T): K (m,n) vec(A ...
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.
It follows that the matrix of B on any basis is symmetric. This implies that the property of being a symmetric matrix must be kept by the above change-of-base formula. One can also check this by noting that the transpose of a matrix product is the product of the transposes computed in the reverse order. In particular,
The conjugate transpose of a matrix with real entries reduces to the transpose of , as the conjugate of a real number is the number itself. The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2 × 2 {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication: a + i b ≡ ...
Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...