Search results
Results from the WOW.Com Content Network
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with any other DE, its unknown(s) consists of one (or more) function (s) and involves the derivatives of those functions. [ 1 ]
An ODE problem can be expanded with the auxiliary variables which make the power series method trivial for an equivalent, larger system. Expanding the ODE problem with auxiliary variables produces the same coefficients (since the power series for a function is unique) at the cost of also calculating the coefficients of auxiliary equations.
Consider a linear non-homogeneous ordinary differential equation of the form = + (+) = where () denotes the i-th derivative of , and denotes a function of .. The method of undetermined coefficients provides a straightforward method of obtaining the solution to this ODE when two criteria are met: [2]
Given a simply connected and open subset D of and two functions I and J which are continuous on D, an implicit first-order ordinary differential equation of the form (,) + (,) =,is called an exact differential equation if there exists a continuously differentiable function F, called the potential function, [1] [2] so that
The function σ P is homogeneous of degree k in the ξ variable. The zeros of σ P , away from the zero section of T ∗ X , are the characteristics of P . A hypersurface of X defined by the equation F ( x ) = c is called a characteristic hypersurface at x if
Shortcut Action; Navigate to the left tab [Navigate to the right tab ] Start a new email conversation N: Go to the inbox M: Go to Settings ; Search
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).
The Bogacki–Shampine method is a method for the numerical solution of ordinary differential equations, that was proposed by Przemysław Bogacki and Lawrence F. Shampine in 1989 (Bogacki & Shampine 1989).