enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Then the sum of the resulting series, i.e., the limit of the sequence of partial sums of the resulting series, satisfies +, = (, +,) =, +,, when the limits exist. Therefore, first, the series resulting from addition is summable if the series added were summable, and, second, the sum of the resulting series is the addition of the sums of the ...

  3. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  4. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The sum of the series is approximately equal to 1.644934. [3] The Basel problem asks for the exact sum of this series (in closed form), as well as a proof that this sum is correct. Euler found the exact sum to be / and announced this discovery in 1735. His arguments were based on manipulations that were not justified at the time, although he ...

  5. Abel's summation formula - Wikipedia

    en.wikipedia.org/wiki/Abel's_summation_formula

    Abel's summation formula can be generalized to the case where is only assumed to be continuous if the integral is interpreted as a Riemann–Stieltjes integral: ∑ x < n ≤ y a n ϕ ( n ) = A ( y ) ϕ ( y ) − A ( x ) ϕ ( x ) − ∫ x y A ( u ) d ϕ ( u ) . {\displaystyle \sum _{x<n\leq y}a_{n}\phi (n)=A(y)\phi (y)-A(x)\phi (x)-\int _{x ...

  6. Cesàro summation - Wikipedia

    en.wikipedia.org/wiki/Cesàro_summation

    Since the sequence of partial sums grows without bound, the series G diverges to infinity. The sequence (t n) of means of partial sums of G is (,,,, …). This sequence diverges to infinity as well, so G is not Cesàro summable. In fact, for the series of any sequence which diverges to (positive or negative) infinity, the Cesàro method also ...

  7. Grandi's series - Wikipedia

    en.wikipedia.org/wiki/Grandi's_series

    In modern mathematics, the sum of an infinite series is defined to be the limit of the sequence of its partial sums, if it exists. The sequence of partial sums of Grandi's series is 1, 0, 1, 0, ..., which clearly does not approach any number (although it does have two accumulation points at 0 and 1). Therefore, Grandi's series is divergent.

  8. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions include: The partial sums (the Taylor polynomials) of the series can be used as approximations of the function ...

  9. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    Generalizing this argument, any infinite sum of values of a monotone decreasing positive function of (like the harmonic series) has partial sums that are within a bounded distance of the values of the corresponding integrals. Therefore, the sum converges if and only if the integral over the same range of the same function converges.

  1. Related searches how to find partial sum of infinite series formula calculator calculus 0

    partial sums in seriesinfinite sums in math
    partial sums in math