Search results
Results from the WOW.Com Content Network
where G is the universal constant of gravitation (commonly taken as G = 6.674 × 10 −11 m 3 kg −1 s −2), [10] M is the mass of Mars (most updated value: 6.41693 × 10 23 kg), [11] m is the mass of the satellite, r is the distance between Mars and the satellite, and is the angular velocity of the satellite, which is also equivalent to (T ...
Mars has an orbit with a semimajor axis of 1.524 astronomical units (228 million km) (12.673 light minutes), and an eccentricity of 0.0934. [ 1 ] [ 2 ] The planet orbits the Sun in 687 days [ 3 ] and travels 9.55 AU in doing so, [ 4 ] making the average orbital speed 24 km/s.
Vesta (radius 262.7 ± 0.1 km), the second-largest asteroid, appears to have a differentiated interior and therefore likely was once a dwarf planet, but it is no longer very round today. [74] Pallas (radius 255.5 ± 2 km ), the third-largest asteroid, appears never to have completed differentiation and likewise has an irregular shape.
For example, if a TNO is incorrectly assumed to have a mass of 3.59 × 10 20 kg based on a radius of 350 km with a density of 2 g/cm 3 but is later discovered to have a radius of only 175 km with a density of 0.5 g/cm 3, its true mass would be only 1.12 × 10 19 kg.
The gravitational constant GM (μ) for Mars has the value of 42 830 km 3 s −2, its equatorial radius is 3 389.50 km and the known rotational period (T) of the planet is 1.025 956 76 Earth days (88 642.66 s). Using these values, Mars' orbital altitude is equal to 17 039 km. [73]
Mars has a higher scale height of 11.1 km than Earth (8.5 km) because of its weaker gravity. [5] The theoretical dry adiabatic lapse rate of Mars is 4.3 °C km −1 , [ 131 ] but the measured average lapse rate is about 2.5 °C km −1 because the suspended dust particles absorb solar radiation and heat the air. [ 2 ]
In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.
The amount of Martian deuterium (D/H = 9.3 ± 1.7 10 −4) is five to seven times the amount on Earth (D/H = 1.56 10 −4), suggesting that ancient Mars had significantly higher levels of water. Results from the Curiosity rover had previously found a high ratio of deuterium in Gale Crater , though not significantly high enough to suggest the ...