Search results
Results from the WOW.Com Content Network
During adenylylation, there is a nucleophilic attack on the alpha phosphate of ATP from a catalytic lysine resulting in the production of inorganic pyrophosphate (PPi) and a covalently bound lysine-AMP intermediate in the active site of DNA ligase 1. During the AMP transfer step, the DNA ligase becomes associated with the DNA, locates a nick ...
Skp2 is of considerable interest as a novel and attractive target for cancer therapeutical development, as disrupting the SCF complex will result in increased levels of p27, which will inhibit aberrant cellular proliferation. Although Skp2 is an enzyme, its function requires the assembly of the other members of the SCF complex.
DNA ligase is a type of enzyme that facilitates the joining of DNA strands together by catalyzing the formation of a phosphodiester bond.It plays a role in repairing single-strand breaks in duplex DNA in living organisms, but some forms (such as DNA ligase IV) may specifically repair double-strand breaks (i.e. a break in both complementary strands of DNA).
S phase (Synthesis phase) is the phase of the cell cycle in which DNA is replicated, occurring between G 1 phase and G 2 phase. [1] Since accurate duplication of the genome is critical to successful cell division, the processes that occur during S-phase are tightly regulated and widely conserved.
Next, biochemical studies revealed that Cdc34 is an E2 enzyme that physically interacts with an E3 ubiquitin ligase complex containing Skp1, Cdc4, and several other proteins. [6] Skp1’s known binding partners—specifically Skp2, Cyclin F, and Cdc4—were found to share an approximately 40 residue motif that was coined the F-box motif.
The mechanism of the ligation reaction was first elucidated in the laboratory of I. Robert Lehman. [4] [5] Two fragments of DNA may be joined by DNA ligase which catalyzes the formation of a phosphodiester bond between the 3'-hydroxyl group (-OH) at one end of a strand of DNA and the 5'-phosphate group (-PO4) of another.
In biochemistry, a ligase is an enzyme that can catalyze the joining of two molecules by forming a new chemical bond.This is typically via hydrolysis of a small pendant chemical group on one of the molecules, typically resulting in the formation of new C-O, C-S, or C-N bonds.
The DNA ligase IV complex, consisting of the catalytic subunit DNA ligase IV and its cofactor XRCC4 (Dnl4 and Lif1 in yeast), performs the ligation step of repair. [25] XLF, also known as Cernunnos, is homologous to yeast Nej1 and is also required for NHEJ.