Search results
Results from the WOW.Com Content Network
The Wiener process is scale-invariant. In physics, mathematics and statistics, scale invariance is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality.
Alternative methods for scale-invariant object recognition under clutter / partial occlusion include the following. RIFT [38] is a rotation-invariant generalization of SIFT. The RIFT descriptor is constructed using circular normalized patches divided into concentric rings of equal width and within each ring a gradient orientation histogram is ...
The renormalization group is intimately related to scale invariance and conformal invariance, symmetries in which a system appears the same at all scales (self-similarity), [a] where under the fixed point of the renormalization group flow the field theory is conformally invariant. As the scale varies, it is as if one is decreasing (as RG is a ...
A detailed analysis of the selection properties of the determinant of the Hessian operator and other closely scale-space interest point detectors is given in (Lindeberg 2013a) [1] showing that the determinant of the Hessian operator has better scale selection properties under affine image transformations than the Laplacian operator.
Systems analysis is "the process of studying a procedure or business to identify its goal and purposes and create systems and procedures that will efficiently achieve them". Another view sees systems analysis as a problem-solving technique that breaks a system down into its component pieces and analyses how well those parts work and interact to ...
A system that will always produce the same output for a given input is said to be deterministic. A system that will produce different outputs for a given input is said to be stochastic. There are many methods of analysis developed specifically for linear time-invariant (LTI) deterministic systems. Unfortunately, in the case of analog systems ...
The term is often used exclusively to refer to linear time-invariant (LTI) systems. Most real systems have non-linear input-output characteristics, but many systems operated within nominal parameters (not over-driven) have behavior close enough to linear that LTI system theory is an acceptable representation of their input-output behavior.
At present, the more specific characteristics of scale-free networks vary with the generative mechanism used to create them. For instance, networks generated by preferential attachment typically place the high-degree vertices in the middle of the network, connecting them together to form a core, with progressively lower-degree nodes making up ...