Search results
Results from the WOW.Com Content Network
Hydrochloric acid is a strong inorganic acid that is used in many industrial processes such as refining metal. The application often determines the required product quality. [25] Hydrogen chloride, not hydrochloric acid, is used more widely in industrial organic chemistry, e.g. for vinyl chloride and dichloroethane. [8]
The optional second step (for bare silicon wafers) is a short immersion in a 1:100 or 1:50 solution of aqueous HF (hydrofluoric acid) at 25 °C for about fifteen seconds, in order to remove the thin oxide layer and some fraction of ionic contaminants. If this step is performed without ultra high purity materials and ultra clean containers, it ...
Density (g cm-3) Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 K b & K f [1] Lauric acid: 298.9 44 –3.9 Acetic acid: 1.04 117.9 3.14 16.6 –3.90 K b [1] K f [2] Acetone: 0.78 56.2 1.67 –94.8 K b [3] Benzene: 0.87 80.1 2.65 5.5 –5.12 K b & K f [2 ...
Potassium permanganate can be used to generate chlorine gas when concentrated hydrochloric acid is added to it: 2KMn04 + 16HCl —> 2KCl + 2MnCl2 + 8H2O + 5Cl2 This process has been investigated by Venable & Jackson and fails if the concentation of the hydrochloric acid solution drops below 2mM Venable, F. P.; Jackson, D.H. (1920). "The ...
The desired product, benzoic acid (3), is obtained by the following work-up: [2] Synthesis of benzoic acid with work-up step in red. The reaction mixture containing the Grignard reagent is allowed to warm to room temperature in a water bath to allow excess dry ice to evaporate.
Download as PDF; Printable version; In other projects Wikidata item; Appearance. ... hydrochloric acid: 7647-01-0 See also. Category:Alcohol solvents. External links
At room temperature, it is a colorless gas, which forms white fumes of hydrochloric acid upon contact with atmospheric water vapor. Hydrogen chloride gas and hydrochloric acid are important in technology and industry. Hydrochloric acid, the aqueous solution of hydrogen chloride, is also commonly given the formula HCl.
The process has a high energy consumption, for example around 2,500 kWh (9,000 MJ) of electricity per tonne of sodium hydroxide produced. Because the process yields equivalent amounts of chlorine and sodium hydroxide (two moles of sodium hydroxide per mole of chlorine), it is necessary to find a use for these products in the same proportion.