enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Early-arriving fact - Wikipedia

    en.wikipedia.org/wiki/Early-arriving_fact

    In the data warehouse practice of extract, transform, load (ETL), an early fact or early-arriving fact, [1] also known as late-arriving dimension or late-arriving data, [2] denotes the detection of a dimensional natural key during fact table source loading, prior to the assignment of a corresponding primary key or surrogate key in the dimension table.

  3. Fact table - Wikipedia

    en.wikipedia.org/wiki/Fact_table

    Example of a star schema; the central table is the fact table. In data warehousing, a fact table consists of the measurements, metrics or facts of a business process.It is located at the center of a star schema or a snowflake schema surrounded by dimension tables.

  4. Data loading - Wikipedia

    en.wikipedia.org/wiki/Data_loading

    Data loading, or simply loading, is a part of data processing where data is moved between two systems so that it ends up in a staging area on the target system. With the traditional extract, transform and load (ETL) method, the load job is the last step, and the data that is loaded has already been transformed.

  5. Data warehouse - Wikipedia

    en.wikipedia.org/wiki/Data_warehouse

    Data Warehouse and Data mart overview, with Data Marts shown in the top right. In computing, a data warehouse (DW or DWH), also known as an enterprise data warehouse (EDW), is a system used for reporting and data analysis and is a core component of business intelligence. [1] Data warehouses are central repositories of data integrated from ...

  6. Kimball lifecycle - Wikipedia

    en.wikipedia.org/wiki/Kimball_lifecycle

    It involves the database environment as well as security. Extract, transform, load (ETL) design and development is the design of some of the heavy procedures in the data warehouse and business intelligence system. Kimball et al. suggests four parts to this process, which are further divided into 34 subsystems: [3] Extracting data

  7. Degenerate dimension - Wikipedia

    en.wikipedia.org/wiki/Degenerate_dimension

    For example, the Oracle FAQ defines a degenerate dimension as a "data dimension that is stored in the fact table rather than a separate dimension table. This eliminates the need to join to a dimension table. You can use the data in the degenerate dimension to limit or 'slice and dice' your fact table measures." [3]

  8. Bill Inmon - Wikipedia

    en.wikipedia.org/wiki/Bill_Inmon

    Inmon created the accepted definition of what a data warehouse is - a subject oriented, nonvolatile, integrated, time variant collection of data in support of management's decisions. Compared with the approach of the other pioneering architect of data warehousing, Ralph Kimball , Inmon's approach is often characterized as a top-down approach.

  9. Dimension (data warehouse) - Wikipedia

    en.wikipedia.org/wiki/Dimension_(data_warehouse)

    A common data warehouse example involves sales as the measure, with customer and product as dimensions. In each sale a customer buys a product. The data can be sliced by removing all customers except for a group under study, and then diced by grouping by product. A dimensional data element is similar to a categorical variable in statistics.