Search results
Results from the WOW.Com Content Network
During adenylylation, there is a nucleophilic attack on the alpha phosphate of ATP from a catalytic lysine resulting in the production of inorganic pyrophosphate (PPi) and a covalently bound lysine-AMP intermediate in the active site of DNA ligase 1. During the AMP transfer step, the DNA ligase becomes associated with the DNA, locates a nick ...
DNA ligase is a type of enzyme that facilitates the joining of DNA strands together by catalyzing the formation of a phosphodiester bond.It plays a role in repairing single-strand breaks in duplex DNA in living organisms, but some forms (such as DNA ligase IV) may specifically repair double-strand breaks (i.e. a break in both complementary strands of DNA).
S phase (Synthesis phase) is the phase of the cell cycle in which DNA is replicated, occurring between G 1 phase and G 2 phase. [1] Since accurate duplication of the genome is critical to successful cell division, the processes that occur during S-phase are tightly regulated and widely conserved.
The mechanism of the ligation reaction was first elucidated in the laboratory of I. Robert Lehman. [4] [5] Two fragments of DNA may be joined by DNA ligase which catalyzes the formation of a phosphodiester bond between the 3'-hydroxyl group (-OH) at one end of a strand of DNA and the 5'-phosphate group (-PO4) of another.
Skp2 is of considerable interest as a novel and attractive target for cancer therapeutical development, as disrupting the SCF complex will result in increased levels of p27, which will inhibit aberrant cellular proliferation. Although Skp2 is an enzyme, its function requires the assembly of the other members of the SCF complex.
In biochemistry, a ligase is an enzyme that can catalyze the joining of two molecules by forming a new chemical bond.This is typically via hydrolysis of a small pendant chemical group on one of the molecules, typically resulting in the formation of new C-O, C-S, or C-N bonds.
DNA ligase is an enzyme that joins together ends of DNA molecules. Although commonly represented as joining two pairs of ends at once, as in the ligation of restriction enzyme fragments, ligase can also join the ends on only one of the two strands (for example, when the other strand is already continuous or lacks a terminal phosphate necessary for ligation).
The first step in Gateway cloning is the preparation of a Gateway Entry clone. There are a few different ways to make entry clone. Gateway attB1 and attB2 sequences are added to the 5' and 3' end of a gene fragment, respectively, using gene-specific PCR primers and PCR amplification. The PCR amplification products are then mixed with a propriet