Search results
Results from the WOW.Com Content Network
Inverse probability weighting is a statistical technique for estimating quantities related to a population other than the one from which the data was collected. Study designs with a disparate sampling population and population of target inference (target population) are common in application. [ 1 ]
For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().
The method of inverse probability (assigning a probability distribution to an unobserved variable) is called Bayesian probability, the distribution of data given the unobserved variable is the likelihood function (which does not by itself give a probability distribution for the parameter), and the distribution of an unobserved variable, given ...
Adjusting for unequal probability selection through "individual case weights" (e.g. inverse probability weighting), yields various types of estimators for quantities of interest. Estimators such as Horvitz–Thompson estimator yield unbiased estimators (if the selection probabilities are indeed known, or approximately known), for total and the ...
The formula in the definition of characteristic function allows us to compute φ when we know the distribution function F (or density f). If, on the other hand, we know the characteristic function φ and want to find the corresponding distribution function, then one of the following inversion theorems can be used. Theorem.
where is the Kullback–Leibler divergence, and is the outer product distribution which assigns probability () to each (,).. Notice, as per property of the Kullback–Leibler divergence, that (;) is equal to zero precisely when the joint distribution coincides with the product of the marginals, i.e. when and are independent (and hence observing tells you nothing about ).
In probability theory and statistics, an inverse distribution is the distribution of the reciprocal of a random variable. Inverse distributions arise in particular in the Bayesian context of prior distributions and posterior distributions for scale parameters .
In probability and statistics, the inverse-chi-squared distribution (or inverted-chi-square distribution [1]) is a continuous probability distribution of a positive-valued random variable. It is closely related to the chi-squared distribution .