enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parallelepiped - Wikipedia

    en.wikipedia.org/wiki/Parallelepiped

    The parallelepiped with D 3d symmetry is known as a trigonal trapezohedron, which has six congruent rhombic faces (also called an isohedral rhombohedron). For parallelepipeds with D 2h symmetry, there are two cases: Rectangular cuboid: it has six rectangular faces (also called a rectangular parallelepiped, or sometimes simply a cuboid).

  3. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    The area of the parallelogram is the area of the blue region, which is the interior of the parallelogram. The base × height area formula can also be derived using the figure to the right. The area K of the parallelogram to the right (the blue area) is the total area of the rectangle less the area of the two orange triangles. The area of the ...

  4. Rectangle - Wikipedia

    en.wikipedia.org/wiki/Rectangle

    In Euclidean plane geometry, a rectangle is a rectilinear convex polygon or a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square.

  5. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    A sphere in 3-space (also called a 2-sphere because it is a 2-dimensional object) consists of the set of all points in 3-space at a fixed distance r from a central point P. The solid enclosed by the sphere is called a ball (or, more precisely a 3-ball). The volume of the ball is given by

  6. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the sum of the squares of the diagonals (the parallelogram law).

  7. Hooper's paradox - Wikipedia

    en.wikipedia.org/wiki/Hooper's_paradox

    The length of the shorter side at the right angle measures 2 units in the original shape but only 1.8 units in the rectangle. This means, the real triangles of the original shape overlap in the rectangle. The overlapping area is a parallelogram, the diagonals and sides of which can be computed via the Pythagorean theorem.

  8. Cuboid - Wikipedia

    en.wikipedia.org/wiki/Cuboid

    General cuboids have many different types. When all of the rectangular cuboid's edges are equal in length, it results in a cube, with six square faces and adjacent faces meeting at right angles. [1] [3] Along with the rectangular cuboids, parallelepiped is a cuboid with six parallelogram. Rhombohedron is a cuboid with six rhombus faces.

  9. Rectangular cuboid - Wikipedia

    en.wikipedia.org/wiki/Rectangular_cuboid

    its surface area is the sum of the area of all faces: = (+ +). its space diagonal can be found by constructing a right triangle of height c {\displaystyle c} with its base as the diagonal of the a {\displaystyle a} -by- b {\displaystyle b} rectangular face, then calculating the hypotenuse's length using the Pythagorean theorem : d = a 2 + b 2 ...