enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    which breaks into the radial acceleration ⁠ d 2 r / dt 2 ⁠, centripetal acceleration –rω 2, Coriolis acceleration 2ω ⁠ dr / dt ⁠, and angular acceleration rα. Special cases of motion described by these equations are summarized qualitatively in the table below.

  3. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    Radial acceleration is used when calculating the total force. Tangential acceleration is not used in calculating total force because it is not responsible for keeping the object in a circular path. The only acceleration responsible for keeping an object moving in a circle is the radial acceleration.

  4. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    are called the tangential acceleration and the normal or radial acceleration (or centripetal acceleration in circular motion, see also circular motion and centripetal force), respectively. Geometrical analysis of three-dimensional space curves, which explains tangent, (principal) normal and binormal, is described by the Frenet–Serret formulas ...

  5. Rotating reference frame - Wikipedia

    en.wikipedia.org/wiki/Rotating_reference_frame

    In classical mechanics, the Euler acceleration (named for Leonhard Euler), also known as azimuthal acceleration [8] or transverse acceleration [9] is an acceleration that appears when a non-uniformly rotating reference frame is used for analysis of motion and there is variation in the angular velocity of the reference frame's axis. This article ...

  6. Rotation around a fixed axis - Wikipedia

    en.wikipedia.org/wiki/Rotation_around_a_fixed_axis

    The radial acceleration (perpendicular to direction of motion) is given by = =. It is directed towards the center of the rotational motion, and is often called the centripetal acceleration . The angular acceleration is caused by the torque , which can have a positive or negative value in accordance with the convention of positive and negative ...

  7. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  8. Classical central-force problem - Wikipedia

    en.wikipedia.org/wiki/Classical_central-force...

    The orbital equation can be derived directly from the Hamilton–Jacobi equation. [31] Adopting the radial distance r and the azimuthal angle φ as the coordinates, the Hamilton-Jacobi equation for a central-force problem can be written + + = where S = S φ (φ) + S r (r) − E tot t is Hamilton's principal function, and E tot and t represent ...

  9. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    These include differential equations, manifolds, Lie groups, and ergodic theory. [4] This article gives a summary of the most important of these. This article lists equations from Newtonian mechanics, see analytical mechanics for the more general formulation of classical mechanics (which includes Lagrangian and Hamiltonian mechanics).