Search results
Results from the WOW.Com Content Network
Effective number of bits (ENOB) is a measure of the real dynamic range of an analog-to-digital converter (ADC), digital-to-analog converter (DAC), or associated circuitry. . Although the resolution of a converter may be specified by the number of bits used to represent the analog value, real circuits however are imperfect and introduce additional noise and distor
From Tables 5.5-1 "E-UTRA Operating Bands" and 5.6.1-1 "E-UTRA Channel Bandwidth" of the latest published version of the 3GPP TS 36.101, [1] the following table lists the specified frequency bands of LTE and the channel bandwidths each band supports.
For example, the frequency one octave above 40 Hz is 80 Hz. The term is derived from the Western musical scale where an octave is a doubling in frequency. [note 1] Specification in terms of octaves is therefore common in audio electronics. Along with the decade, it is a unit used to describe frequency bands or frequency ratios. [1] [2]
A key characteristic of bandwidth is that any band of a given width can carry the same amount of information, regardless of where that band is located in the frequency spectrum. [ a ] For example, a 3 kHz band can carry a telephone conversation whether that band is at baseband (as in a POTS telephone line) or modulated to some higher frequency.
Older BUCs convert from a 70 MHz intermediate frequency (IF) to K u band or C band. Most BUCs use phase-locked loop local oscillators and require an external 10 MHz frequency reference to maintain the correct transmit frequency. BUCs used in remote locations are often 2 or 4 W in the K u band and 5 W in the C band. The 10 MHz reference ...
For example, an audio amplifier will usually have a frequency band ranging from 20 Hz to 20 kHz and representing the entire band using a decade log scale is very convenient. Typically the graph for such a representation would begin at 1 Hz (10 0 ) and go up to perhaps 100 kHz (10 5 ), to comfortably include the full audio band in a standard ...
In double-conversion superheterodyne receivers, a first intermediate frequency of 10.7 MHz is often used, followed by a second intermediate frequency of 470 kHz (or 700 kHz with DYNAS [15]). There are triple conversion designs used in police scanner receivers, high-end communications receivers, and many point-to-point microwave systems.
For the case of a given sampling frequency, simpler formulae for the constraints on the signal's spectral band are given below. Spectrum of the FM radio band (88–108 MHz) and its baseband alias under 44 MHz (n = 5) sampling. An anti-alias filter quite tight to the FM radio band is required, and there's not room for stations at nearby ...