Search results
Results from the WOW.Com Content Network
A fiber Bragg grating (FBG) is a type of distributed Bragg reflector constructed in a short segment of optical fiber that reflects particular wavelengths of light and transmits all others. This is achieved by creating a periodic variation in the refractive index of the fiber core, which generates a wavelength-specific dielectric mirror .
Time-resolved simulation of a pulse reflecting from a Bragg mirror. A distributed Bragg reflector (DBR) is a reflector used in waveguides, such as optical fibers.It is a structure formed from multiple layers of alternating materials with different refractive index, or by periodic variation of some characteristic (such as height) of a dielectric waveguide, resulting in periodic variation in the ...
The concept of addressed fiber Bragg structures was introduced in 2018 by Airat Sakhabutdinov [1] and developed in collaboration with his scientific adviser, Oleg Morozov. . The idea emerged from the earlier works of Morozov and his colleagues, [2] [3] where the double-frequency optical radiation from an electro-optic modulator was used for the definition of the FBG central wavelength based on ...
When the incident light beam is at Bragg angle, a diffraction pattern emerges where an order of diffracted beam occurs at each angle θ that satisfies: [3] = Here, m = ..., −2, −1, 0, +1, +2, ... is the order of diffraction, λ is the wavelength of light in vacuum, and Λ is the wavelength of the sound. [4]
where m is the Bragg order (a positive integer), λ B the diffracted wavelength, Λ the fringe spacing of the grating, θ the angle between the incident beam and the normal (N) of the entrance surface and φ the angle between the normal and the grating vector (K G). Radiation that does not match Bragg's law will pass through the VBG undiffracted.
Volume holograms are holograms where the thickness of the recording material is much larger than the light wavelength used for recording. In this case diffraction of light from the hologram is possible only as Bragg diffraction, i.e., the light has to have the right wavelength (color) and the wave must have the right shape (beam direction, wavefront profile).
The AWGs consist of a number of input (1) and output (5) couplers, a free space propagation region (2) and (4) and the grating waveguides (3). The grating waveguides consists of many waveguides, each having a constant length increment (ΔL). Light is coupled into the device via an optical fiber (1) connected to the input port.
A typical radiation pattern of phased arrays whose inter-element spacing is greater than half a wavelength, hence the radiation pattern has grating lobes.. For discrete aperture antennas (such as phased arrays) in which the element spacing is greater than a half wavelength, a spatial aliasing effect allows plane waves incident to the array from visible angles other than the desired direction ...