Search results
Results from the WOW.Com Content Network
The first two steps of the Gram–Schmidt process. In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt process or Gram-Schmidt algorithm is a way of finding a set of two or more vectors that are perpendicular to each other.
A practical way to enforce this is by requiring that the next search direction be built out of the current residual and all previous search directions. The conjugation constraint is an orthonormal-type constraint and hence the algorithm can be viewed as an example of Gram-Schmidt orthonormalization. This gives the following expression:
Thus the problem of finding conjugate axes is less constrained than the problem of orthogonalization, so the Gram–Schmidt process works, with additional degrees of freedom that we can later use to pick the ones that would simplify the computation: Arbitrarily set .
This method has greater numerical stability than the Gram–Schmidt method above. The following table gives the number of operations in the k -th step of the QR-decomposition by the Householder transformation, assuming a square matrix with size n .
The vector projection is an important operation in the Gram–Schmidt orthonormalization of vector space bases. It is also used in the separating axis theorem to detect whether two convex shapes intersect.
In linear algebra, the Schmidt decomposition (named after its originator Erhard Schmidt) refers to a particular way of expressing a vector in the tensor product of two inner product spaces. It has numerous applications in quantum information theory , for example in entanglement characterization and in state purification , and plasticity .
The Gram-Schmidt theorem, together with the axiom of choice, guarantees that every vector space admits an orthonormal basis. This is possibly the most significant use of orthonormality, as this fact permits operators on inner-product spaces to be discussed in terms of their action on the space's orthonormal basis vectors.
In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.