enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gram–Schmidt process - Wikipedia

    en.wikipedia.org/wiki/GramSchmidt_process

    The first two steps of the GramSchmidt process. In mathematics, particularly linear algebra and numerical analysis, the GramSchmidt process or Gram-Schmidt algorithm is a way of finding a set of two or more vectors that are perpendicular to each other.

  3. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    A practical way to enforce this is by requiring that the next search direction be built out of the current residual and all previous search directions. The conjugation constraint is an orthonormal-type constraint and hence the algorithm can be viewed as an example of Gram-Schmidt orthonormalization. This gives the following expression:

  4. Derivation of the conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the...

    Thus the problem of finding conjugate axes is less constrained than the problem of orthogonalization, so the GramSchmidt process works, with additional degrees of freedom that we can later use to pick the ones that would simplify the computation: Arbitrarily set .

  5. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    This method has greater numerical stability than the GramSchmidt method above. The following table gives the number of operations in the k -th step of the QR-decomposition by the Householder transformation, assuming a square matrix with size n .

  6. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The vector projection is an important operation in the GramSchmidt orthonormalization of vector space bases. It is also used in the separating axis theorem to detect whether two convex shapes intersect.

  7. Schmidt decomposition - Wikipedia

    en.wikipedia.org/wiki/Schmidt_decomposition

    In linear algebra, the Schmidt decomposition (named after its originator Erhard Schmidt) refers to a particular way of expressing a vector in the tensor product of two inner product spaces. It has numerous applications in quantum information theory , for example in entanglement characterization and in state purification , and plasticity .

  8. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    The Gram-Schmidt theorem, together with the axiom of choice, guarantees that every vector space admits an orthonormal basis. This is possibly the most significant use of orthonormality, as this fact permits operators on inner-product spaces to be discussed in terms of their action on the space's orthonormal basis vectors.

  9. Arnoldi iteration - Wikipedia

    en.wikipedia.org/wiki/Arnoldi_iteration

    In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.