enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled).

  3. Mean squared prediction error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_prediction_error

    When the model has been estimated over all available data with none held back, the MSPE of the model over the entire population of mostly unobserved data can be estimated as follows.

  4. Forecast skill - Wikipedia

    en.wikipedia.org/wiki/Forecast_skill

    In this case, a perfect forecast results in a forecast skill metric of zero, and skill score value of 1.0. A forecast with equal skill to the reference forecast would have a skill score of 0.0, and a forecast which is less skillful than the reference forecast would have unbounded negative skill score values. [4] [5]

  5. Scoring rule - Wikipedia

    en.wikipedia.org/wiki/Scoring_rule

    The quadratic scoring rule is a strictly proper scoring rule (,) = = =where is the probability assigned to the correct answer and is the number of classes.. The Brier score, originally proposed by Glenn W. Brier in 1950, [4] can be obtained by an affine transform from the quadratic scoring rule.

  6. Mean square - Wikipedia

    en.wikipedia.org/wiki/Mean_square

    In mathematics and its applications, the mean square is normally defined as the arithmetic mean of the squares of a set of numbers or of a random variable. [ 1 ] It may also be defined as the arithmetic mean of the squares of the deviations between a set of numbers and a reference value (e.g., may be a mean or an assumed mean of the data), [ 2 ...

  7. Root mean square deviation - Wikipedia

    en.wikipedia.org/wiki/Root_mean_square_deviation

    Normalizing the RMSD facilitates the comparison between datasets or models with different scales. Though there is no consistent means of normalization in the literature, common choices are the mean or the range (defined as the maximum value minus the minimum value) of the measured data: [4]

  8. Stein's unbiased risk estimate - Wikipedia

    en.wikipedia.org/wiki/Stein's_unbiased_risk_estimate

    A standard application of SURE is to choose a parametric form for an estimator, and then optimize the values of the parameters to minimize the risk estimate. This technique has been applied in several settings. For example, a variant of the James–Stein estimator can be derived by finding the optimal shrinkage estimator. [2]

  9. Mean percentage error - Wikipedia

    en.wikipedia.org/wiki/Mean_percentage_error

    where is the actual value of the quantity being forecast, is the forecast, and is the number of different times for which the variable is forecast. Because actual rather than absolute values of the forecast errors are used in the formula, positive and negative forecast errors can offset each other; as a result, the formula can be used as a ...