Search results
Results from the WOW.Com Content Network
Molecular models may be created for several reasons – as pedagogic tools for students or those unfamiliar with atomistic structures; as objects to generate or test theories (e.g., the structure of DNA); as analogue computers (e.g., for measuring distances and angles in flexible systems); or as aesthetically pleasing objects on the boundary of ...
When necessary, the position of the hydroxyl group is indicated by a number between the alkane name and the -ol: propan-1-ol for CH 3 CH 2 CH 2 OH, propan-2-ol for CH 3 CH(OH)CH 3. If a higher priority group is present (such as an aldehyde , ketone , or carboxylic acid ), then the prefix hydroxy- is used, [ 19 ] e.g., as in 1-hydroxy-2 ...
A water molecule has an HOH bending mode at about 1600 cm −1, so the absence of this band can be used to distinguish an OH group from a water molecule. When the OH group is bound to a metal ion in a coordination complex, an M−OH bending mode can be observed. For example, in [Sn(OH) 6] 2− it occurs at 1065 cm −1.
Walsh diagrams in conjunction with molecular orbital theory can also be used as a tool to predict reactivity. By generating a Walsh Diagram and then determining the HOMO/LUMO of that molecule, it can be determined how the molecule is likely to react. In the following example, the Lewis acidity of AH 3 molecules such as BH 3 and CH 3 + is predicted.
In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula −OH and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry , alcohols and carboxylic acids contain one or more hydroxy groups.
In this case, the water molecule is the conjugate acid of the basic hydroxide ion after the latter received the hydrogen ion from ammonium. On the other hand, ammonia is the conjugate base for the acidic ammonium after ammonium has donated a hydrogen ion to produce the water molecule. Also, OH − can be considered as the conjugate base of H
It consists of a methylene bridge (−CH 2 − unit) bonded to a hydroxyl group (−OH). This makes the hydroxymethyl group an alcohol . It has the identical chemical formula with the methoxy group ( −O−CH 3 ) that differs only in the attachment site and orientation to the rest of the molecule.
Many solids, e.g. graphite, adopt low-dimensional structures, in which case the layers (2-D) or chains (1-D) should be shown. Some inorganic solids dissociate - or crack - into molecular species heating or upon dissolving, e.g. Aluminium chloride. In such cases it is helpful to depict both the molecular and the nonmolecular forms.