enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravimetry - Wikipedia

    en.wikipedia.org/wiki/Gravimetry

    A gravimeter measures this gravitational force. For a small body, general relativity predicts gravitational effects indistinguishable from the effects of acceleration by the equivalence principle. Thus, gravimeters can be regarded as special-purpose accelerometers. Many weighing scales may be regarded as simple

  3. Simon Stevin - Wikipedia

    en.wikipedia.org/wiki/Simon_Stevin

    Simon Stevin (Dutch: [ˈsimɔn steːˈvɪn]; 1548–1620), sometimes called Stevinus, was a Flemish mathematician, scientist and music theorist. [1] He made various contributions in many areas of science and engineering, both theoretical and practical.

  4. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.

  5. Gravitational energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_energy

    For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.

  6. John Bardeen - Wikipedia

    en.wikipedia.org/wiki/John_Bardeen

    John Bardeen (/ b ɑːr ˈ d iː n /; May 23, 1908 – January 30, 1991) [2] was an American physicist.He is the only person to be awarded the Nobel Prize in Physics twice: first in 1956 with Walter Houser Brattain and William Shockley for their invention of the transistor; and again in 1972 with Leon Cooper and John Robert Schrieffer for their development of the BCS theory.

  7. History of gravitational theory - Wikipedia

    en.wikipedia.org/wiki/History_of_gravitational...

    To make this into an equal-sided formula or equation, there needed to be a multiplying factor or constant that would give the correct force of gravity no matter the value of the masses or distance between them – the gravitational constant. Newton would need an accurate measure of this constant to prove his inverse-square law.

  8. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    The equation for universal gravitation thus takes the form: F = G m 1 m 2 r 2 , {\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}},} where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses , and G is the gravitational constant .

  9. History of general relativity - Wikipedia

    en.wikipedia.org/wiki/History_of_general_relativity

    General relativity is a theory of gravitation that was developed by Albert Einstein between 1907 and 1915, with contributions by many others after 1915. According to general relativity, the observed gravitational attraction between masses results from the warping of space and time by those masses.