Search results
Results from the WOW.Com Content Network
The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.
The first six triangular numbers. The partial sums of the series 1 + 2 + 3 + 4 + 5 + 6 + ⋯ are 1, 3, 6, 10, 15, etc.The nth partial sum is given by a simple formula
Declarative solutions are easier to understand than imperative solutions, [1] [2] and so there has been a long-term trend from imperative to declarative methods. [3] [4] Formula calculators are part of this trend. Many software tools for the general user, such as spreadsheets, are declarative. Formula calculators are examples of such tools.
Even for the first root that involves at most two square roots, the expression of the solutions in terms of radicals is usually highly complicated. However, when no square root is needed, the form of the first solution may be rather simple, as for the equation x 5 − 5x 4 + 30x 3 − 50x 2 + 55x − 21 = 0, for which the only real solution is
For instance, the number 25 in column k = 3 and row n = 5 is given by 25 = 7 + (3×6), where 7 is the number above and to the left of 25, 6 is the number above 25 and 3 is the column containing the 6.
The graph of the logarithm to base 2 crosses the x axis (horizontal axis) at 1 and passes through the points with coordinates (2, 1), (4, 2), and (8, 3). For example, log 2 (8) = 3, because 2 3 = 8. The graph gets arbitrarily close to the y axis, but does not meet or intersect it.
2. Denotes the additive inverse and is read as minus, the negative of, or the opposite of; for example, –2. 3. Also used in place of \ for denoting the set-theoretic complement; see \ in § Set theory. × (multiplication sign) 1. In elementary arithmetic, denotes multiplication, and is read as times; for example, 3 × 2. 2.
Centripetal Catmull–Rom splines have several desirable mathematical properties compared to the original and the other types of Catmull-Rom formulation. [3] First, loops and self-intersections do not occur within a curve segment. Second, cusps will never occur within a curve segment. Third, it follows the control points more tightly. [4] [vague]