Search results
Results from the WOW.Com Content Network
The brain also uses glucose during starvation, but most of the body's glucose is allocated to the skeletal muscles and red blood cells. The cost of the brain using too much glucose is muscle loss. If the brain and muscles relied entirely on glucose, the body would lose 50% of its nitrogen content in 8–10 days. [13]
The brain consumes large amounts of energy but does not have a reservoir of stored energy substrates. Since higher processes in the brain occur almost constantly, cerebral blood flow is essential for the maintenance of neurons , astrocytes , and other cells of the brain.
PET image of the human brain showing energy consumption. The brain consumes up to 20% of the energy used by the human body, more than any other organ. [131] In humans, blood glucose is the primary source of energy for most cells and is critical for normal function in a number of tissues, including the brain. [132]
Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. Dopamine constitutes about 80% of the catecholamine content in the brain.
Brain cells make up the functional tissue of the brain. The rest of the brain tissue is the structural stroma that includes connective tissue such as the meninges , blood vessels , and ducts. The two main types of cells in the brain are neurons , also known as nerve cells, and glial cells , also known as neuroglia. [ 1 ]
As for the orgasm connection, oxytocin is produced in the hypothalamus (i.e., the control center of the brain), which is yet another region activated—both in the posterior and anterior—during ...
The PVN contains magnocellular neurosecretory cells whose axons extend into the posterior pituitary, parvocellular neurosecretory cells that project to the median eminence, ultimately signalling to the anterior pituitary, and several populations of other cells that project to many different brain regions including parvocellular preautonomic cells that project to the brainstem and spinal cord.
The gases are produced in the neural cytoplasm and are immediately diffused through the cell membrane into the extracellular fluid and into nearby cells to stimulate production of second messengers. Soluble gas neurotransmitters are difficult to study, as they act rapidly and are immediately broken down, existing for only a few seconds.