Search results
Results from the WOW.Com Content Network
Enthalpy (/ ˈ ɛ n θ əl p i / ⓘ) is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. [1] It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere.
The classical Stefan problem aims to describe the evolution of the boundary between two phases of a material undergoing a phase change, for example the melting of a solid, such as ice to water. This is accomplished by solving heat equations in both regions, subject to given boundary and initial conditions.
There are four types of enthalpy changes resulting from a phase transition. To wit: Enthalpy of transformation. This applies to the transformations from one solid phase to another, such as the transformation from α-Fe (bcc ferrite) to -Fe (fcc austenite). The transformation is designated ΔH tr. Enthalpy of fusion or melting.
The laws of thermodynamics are a set of scientific laws which define a group of physical quantities, such as temperature, energy, and entropy, that characterize thermodynamic systems in thermodynamic equilibrium.
The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.
Enthalpy is the transfer of energy in a reaction (for chemical reactions, it is in the form of heat) and is the change in enthalpy. Δ H {\displaystyle \Delta H} is a state function, meaning that Δ H {\displaystyle \Delta H} is independent of processes occurring between initial and final states.
Examples of such thermodynamic properties include specific volume, specific enthalpy, or specific entropy. For example, single-component graphs of temperature vs. specific entropy ( T vs. s ) for water/ steam or for a refrigerant are commonly used to illustrate thermodynamic cycles such as a Carnot cycle , Rankine cycle , or vapor-compression ...
The law states that the total enthalpy change during the complete course of a chemical reaction is independent of the sequence of steps taken. [2] [3] Hess's law is now understood as an expression of the fact that the enthalpy of a chemical process is independent of the path taken from the initial to the final state (i.e. enthalpy is a state ...