Search results
Results from the WOW.Com Content Network
In signal processing, Hermitian matrices are utilized in tasks like Fourier analysis and signal representation. [2] The eigenvalues and eigenvectors of Hermitian matrices play a crucial role in analyzing signals and extracting meaningful information. Hermitian matrices are extensively studied in linear algebra and numerical analysis.
Even if is not square, the two matrices and are both Hermitian and in fact positive semi-definite matrices. The conjugate transpose "adjoint" matrix A H {\displaystyle \mathbf {A} ^{\mathrm {H} }} should not be confused with the adjugate , adj ( A ) {\displaystyle \operatorname {adj} (\mathbf {A} )} , which is also sometimes called adjoint .
For defective matrices, the notion of eigenvectors generalizes to generalized eigenvectors and the diagonal matrix of eigenvalues generalizes to the Jordan normal form. Over an algebraically closed field, any matrix A has a Jordan normal form and therefore admits a basis of generalized eigenvectors and a decomposition into generalized eigenspaces.
In the QR algorithm for a Hermitian matrix (or any normal matrix), the orthonormal eigenvectors are obtained as a product of the Q matrices from the steps in the algorithm. [11] (For more general matrices, the QR algorithm yields the Schur decomposition first, from which the eigenvectors can be obtained by a backsubstitution procedure. [13])
In mathematics, the Rayleigh quotient [1] (/ ˈ r eɪ. l i /) for a given complex Hermitian matrix and nonzero vector is defined as: [2] [3] (,) =. For real matrices and vectors, the condition of being Hermitian reduces to that of being symmetric, and the conjugate transpose to the usual transpose ′.
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
As with most eigenvalue algorithms for Hermitian matrices, divide-and-conquer begins with a reduction to tridiagonal form. For an m × m {\displaystyle m\times m} matrix, the standard method for this, via Householder reflections , takes 4 3 m 3 {\displaystyle {\frac {4}{3}}m^{3}} floating point operations, or 8 3 m 3 {\displaystyle {\frac {8}{3 ...
Rellich draws the following important consequence. << Since in general the individual eigenvectors do not depend continuously on the perturbation parameter even though the operator () does, it is necessary to work, not with an eigenvector, but rather with the space spanned by all the eigenvectors belonging to the same eigenvalue. >>