Search results
Results from the WOW.Com Content Network
It is relatively straightforward to construct a line t tangent to a circle at a point T on the circumference of the circle: A line a is drawn from O, the center of the circle, through the radial point T; The line t is the perpendicular line to a. Construction of a tangent to a given circle (black) from a given exterior point (P).
Tangent lines to circles; Circle packing theorem, the result that every planar graph may be realized by a system of tangent circles; Hexafoil, the shape formed by a ring of six tangent circles; Feuerbach's theorem on the tangency of the nine-point circle of a triangle with its incircle and excircles; Descartes' theorem; Ford circle; Bankoff circle
The tangent line to a point on a differentiable curve can also be thought of as a tangent line approximation, the graph of the affine function that best approximates the original function at the given point. [3] Similarly, the tangent plane to a surface at a given point is the plane that "just touches" the
The intersection graph of a circle packing is the graph having a vertex for each circle, and an edge for every pair of circles that are tangent. If the circle packing is on the plane, or, equivalently, on the sphere, then its intersection graph is called a coin graph; more generally, intersection graphs of interior-disjoint geometric objects ...
The tangents intercept at the radical line (in the diagram yellow). Similar considerations generate the second tangent circle, that meets the given circles at the points , (see diagram). All tangent circles to the given circles can be found by varying line . Positions of the centers
The property of tangency is defined as follows. First, a point, line or circle is assumed to be tangent to itself; hence, if a given circle is already tangent to the other two given objects, it is counted as a solution to Apollonius' problem. Two distinct geometrical objects are said to intersect if they have a point in common. By definition, a ...
A circle with 1st-order contact (tangent) A circle with 2nd-order contact (osculating) A circle with 3rd-order contact at a vertex of a curve. For each point S(t) on a smooth plane curve S, there is exactly one osculating circle, whose radius is the reciprocal of κ(t), the curvature of S at t.
Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have. In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation. By solving this ...