Search results
Results from the WOW.Com Content Network
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
where ln denotes the natural logarithm, is the thermodynamic equilibrium constant, and R is the ideal gas constant.This equation is exact at any one temperature and all pressures, derived from the requirement that the Gibbs free energy of reaction be stationary in a state of chemical equilibrium.
The van 't Hoff factor is the ratio between the actual concentration of particles produced when the substance is dissolved and the concentration of a substance as calculated from its mass. For most non- electrolytes dissolved in water, the van 't Hoff factor is essentially 1.
In thermodynamics, the use of molar concentration is often not convenient because the volume of most solutions slightly depends on temperature due to thermal expansion. This problem is usually resolved by introducing temperature correction factors, or by using a temperature-independent measure of concentration such as molality. [3]
where is osmotic pressure, i is the dimensionless van 't Hoff index, c is the molar concentration of solute, R is the ideal gas constant, and T is the absolute temperature (usually in kelvins). This formula applies when the solute concentration is sufficiently low that the solution can be treated as an ideal solution.
In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...
In contrast, the concentration does change with , since the density of a solution and thus its volume are temperature-dependent. Defining the aqueous-phase composition via molality has the advantage that any temperature dependence of the Henry's law constant is a true solubility phenomenon and not introduced indirectly via a density change of ...
The result is that in dilute ideal solutions, the extent of boiling-point elevation is directly proportional to the molal concentration (amount of substance per mass) of the solution according to the equation: [2] ΔT b = K b · b c. where the boiling point elevation, is defined as T b (solution) − T b (pure solvent).