enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partial least squares regression - Wikipedia

    en.wikipedia.org/wiki/Partial_least_squares...

    Partial least squares discriminant analysis (PLS-DA) is a variant used when the Y is categorical. PLS is used to find the fundamental relations between two matrices (X and Y), i.e. a latent variable approach to modeling the covariance structures in these two spaces.

  3. List of analyses of categorical data - Wikipedia

    en.wikipedia.org/wiki/List_of_analyses_of...

    This is a list of statistical procedures which can be used for the analysis of categorical data, also known as ... Powered partial least squares discriminant analysis;

  4. Partial least squares path modeling - Wikipedia

    en.wikipedia.org/wiki/Partial_least_squares_path...

    The partial least squares path modeling or partial least squares structural equation modeling (PLS-PM, PLS-SEM) [1] [2] [3] is a method for structural equation modeling that allows estimation of complex cause-effect relationships in path models with latent variables.

  5. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  6. SmartPLS - Wikipedia

    en.wikipedia.org/wiki/SmartPLS

    [6] [7] The software computes standard results assessment criteria (e.g., for the reflective and formative measurement models and the structural model, including the HTMT criterion, bootstrap based significance testing, PLSpredict, and goodness of fit) [8] and it supports additional statistical analyses (e.g., confirmatory tetrad analysis ...

  7. Confirmatory composite analysis - Wikipedia

    en.wikipedia.org/.../Confirmatory_composite_analysis

    To ensure identification of the composite model, each composite must be correlated with at least one variable not forming the composite. Additionally to this non-isolation condition, each composite needs to be normalized, e.g., by fixing one weight per composite, the length of each weight vector, or the composite’s variance to a certain value. [2]

  8. Multivariate statistics - Wikipedia

    en.wikipedia.org/wiki/Multivariate_statistics

    Discriminant analysis, or canonical variate analysis, attempts to establish whether a set of variables can be used to distinguish between two or more groups of cases. Linear discriminant analysis (LDA) computes a linear predictor from two sets of normally distributed data to allow for classification of new observations.

  9. Discriminative model - Wikipedia

    en.wikipedia.org/wiki/Discriminative_model

    During the process of extracting the discriminative features prior to the clustering, Principal component analysis (PCA), though commonly used, is not a necessarily discriminative approach. In contrast, LDA is a discriminative one. [9] Linear discriminant analysis (LDA), provides an efficient way of eliminating the disadvantage we list above ...