enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orthogonalization - Wikipedia

    en.wikipedia.org/wiki/Orthogonalization

    In linear algebra, orthogonalization is the process of finding a set of orthogonal vectors that span a particular subspace.Formally, starting with a linearly independent set of vectors {v 1, ... , v k} in an inner product space (most commonly the Euclidean space R n), orthogonalization results in a set of orthogonal vectors {u 1, ... , u k} that generate the same subspace as the vectors v 1 ...

  3. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    The GSL also offers an alternative method that uses a one-sided Jacobi orthogonalization in step 2 (GSL Team 2007). This method computes the SVD of the bidiagonal matrix by solving a sequence of ⁠ 2 × 2 {\displaystyle 2\times 2} ⁠ SVD problems, similar to how the Jacobi eigenvalue algorithm solves a sequence of ⁠ 2 × 2 {\displaystyle 2 ...

  4. Gram–Schmidt process - Wikipedia

    en.wikipedia.org/wiki/Gram–Schmidt_process

    The calculation of the sequence , …, is known as Gram–Schmidt orthogonalization, and the calculation of the sequence , …, is known as Gram–Schmidt orthonormalization. To check that these formulas yield an orthogonal sequence, first compute u 1 , u 2 {\displaystyle \langle \mathbf {u} _{1},\mathbf {u} _{2}\rangle } by substituting the ...

  5. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    The earliest regression form was seen in Isaac Newton's work in 1700 while studying equinoxes, being credited with introducing "an embryonic linear aggression analysis" as "Not only did he perform the averaging of a set of data, 50 years before Tobias Mayer, but summing the residuals to zero he forced the regression line to pass through the ...

  6. Projection (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Projection_(linear_algebra)

    Whereas calculating the fitted value of an ordinary least squares regression requires an orthogonal projection, calculating the fitted value of an instrumental variables regression requires an oblique projection. A projection is defined by its kernel and the basis vectors used to characterize its range (which is a complement of the kernel).

  7. Savitzky–Golay filter - Wikipedia

    en.wikipedia.org/wiki/Savitzky–Golay_filter

    The data consists of a set of points {, }; =,...,, where is an independent variable and is an observed value. They are treated with a set of convolution coefficients, , according to the expression

  8. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression. [1]

  9. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Successive over-relaxation (SOR) — a technique to accelerate the Gauss–Seidel method Symmetric successive over-relaxation (SSOR) — variant of SOR for symmetric matrices; Backfitting algorithm — iterative procedure used to fit a generalized additive model, often equivalent to Gauss–Seidel; Modified Richardson iteration