enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Low-rank approximation - Wikipedia

    en.wikipedia.org/wiki/Low-rank_approximation

    In mathematics, low-rank approximation refers to the process of approximating a given matrix by a matrix of lower rank. More precisely, it is a minimization problem, in which the cost function measures the fit between a given matrix (the data) and an approximating matrix (the optimization variable), subject to a constraint that the approximating matrix has reduced rank.

  3. Jenks natural breaks optimization - Wikipedia

    en.wikipedia.org/wiki/Jenks_natural_breaks...

    When making choropleth maps, the Jenks classification method can be advantageous because if there are clusters in the data values, it will identify them. In fact, in current versions of ArcGIS software from Esri, Jenks is the default classification method. However, the Jenks classification is not recommended for data that have a low variance.

  4. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Dataset HF card, and project's GitHub repository. [393] Diggelmann et al. Climate News dataset A dataset for NLP and climate change media researchers The dataset is made up of a number of data artifacts (JSON, JSONL & CSV text files & SQLite database) Climate news DB, Project's GitHub repository [394] ADGEfficiency Climatext

  5. KNIME - Wikipedia

    en.wikipedia.org/wiki/KNIME

    KNIME (/ n aɪ m / ⓘ), the Konstanz Information Miner, [2] is a free and open-source data analytics, reporting and integration platform.KNIME integrates various components for machine learning and data mining through its modular data pipelining "Building Blocks of Analytics" concept.

  6. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    In theory, classic RNNs can keep track of arbitrary long-term dependencies in the input sequences. The problem with classic RNNs is computational (or practical) in nature: when training a classic RNN using back-propagation, the long-term gradients which are back-propagated can "vanish", meaning they can tend to zero due to very small numbers creeping into the computations, causing the model to ...

  7. Nonlinear dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_dimensionality...

    Nonlinear dimensionality reduction, also known as manifold learning, is any of various related techniques that aim to project high-dimensional data, potentially existing across non-linear manifolds which cannot be adequately captured by linear decomposition methods, onto lower-dimensional latent manifolds, with the goal of either visualizing ...

  8. Multivariate adaptive regression spline - Wikipedia

    en.wikipedia.org/wiki/Multivariate_adaptive...

    In statistics, multivariate adaptive regression splines (MARS) is a form of regression analysis introduced by Jerome H. Friedman in 1991. [1] It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables.

  9. Isolation forest - Wikipedia

    en.wikipedia.org/wiki/Isolation_forest

    Isolation Forest is an algorithm for data anomaly detection using binary trees.It was developed by Fei Tony Liu in 2008. [1] It has a linear time complexity and a low memory use, which works well for high-volume data.