Search results
Results from the WOW.Com Content Network
The +M effect, also known as the positive mesomeric effect, occurs when the substituent is an electron donating group. The group must have one of two things: a lone pair of electrons, or a negative charge. In the +M effect, the pi electrons are transferred from the group towards the conjugate system, increasing the density of the system.
the inductive effect. Electronegative atoms adjacent to the charge will stabilize the charge; the extent of conjugation of the anion. Resonance effects can stabilize the anion. This is especially true when the anion is stabilized as a result of aromaticity. Geometry also affects the orbital hybridization of the charge-bearing carbanion. The ...
[7] [14] Formation of aggregates is influenced by electrostatic interactions, the coordination between lithium and surrounding solvent molecules or polar additives, and steric effects. [ 7 ] A basic building block toward constructing more complex structures is a carbanionic center interacting with a Li 3 triangle in an η 3 - fashion. [ 5 ]
Contributing structures of the carbonate ion. In chemistry, resonance, also called mesomerism, is a way of describing bonding in certain molecules or polyatomic ions by the combination of several contributing structures (or forms, [1] also variously known as resonance structures or canonical structures) into a resonance hybrid (or hybrid structure) in valence bond theory.
The α- and β-anomers of D-glucopyranose.. In organic chemistry, the anomeric effect or Edward-Lemieux effect (after J. T. Edward and Raymond Lemieux) is a stereoelectronic effect that describes the tendency of heteroatomic substituents adjacent to the heteroatom in the ring in, e.g., tetrahydropyran to prefer the axial orientation instead of the less-hindered equatorial orientation that ...
Resonance hyper-Raman spectroscopy: Excitation of the sample occurs by two-photon absorption, rather than by absorption of a single photon. This arrangement allows for excitation of modes that are forbidden in ordinary resonance Raman spectroscopy, with intensity enhancement due to resonance, and also simplifies collection of scattered light ...
These strong nonlinear effects could not be fully rationalized based on the known concepts of the isotopic effects. These and other observations make it possible that isotopes have a much more profound importance than could ever have been imagined by the pioneers. In 2011 Roman Zubarev formulated the isotope resonance hypothesis.
Jablonski diagram of FRET with typical timescales indicated. The black dashed line indicates a virtual photon.. Förster resonance energy transfer (FRET), fluorescence resonance energy transfer, resonance energy transfer (RET) or electronic energy transfer (EET) is a mechanism describing energy transfer between two light-sensitive molecules (chromophores). [1]