Search results
Results from the WOW.Com Content Network
Site-specific recombination systems are highly specific, fast, and efficient, even when faced with complex eukaryotic genomes. [4] They are employed naturally in a variety of cellular processes, including bacterial genome replication, differentiation and pathogenesis, and movement of mobile genetic elements. [5]
Many site-specific recombination systems have been identified to perform these DNA rearrangements for a variety of purposes, but nearly all of these belong to either of two families, tyrosine recombinases (YR) and serine recombinases (SR), depending on their mechanism. These two families can mediate up to three types of DNA rearrangements ...
Some DNA viruses encode a recombinase that facilitates homologous recombination. A well-studied example is the UvsX recombinase encoded by bacteriophage T4. [10] UvsX is homologous to bacterial RecA. UvsX, like RecA, can facilitate the assimilation of linear single-stranded DNA into an homologous DNA duplex to produce a D-loop.
Recombination can be artificially induced in laboratory (in vitro) settings, producing recombinant DNA for purposes including vaccine development. V(D)J recombination in organisms with an adaptive immune system is a type of site-specific genetic recombination that helps immune cells rapidly diversify to recognize and adapt to new pathogens.
Whether homologous recombination or NHEJ is used to repair double-strand breaks is largely determined by the phase of cell cycle. Homologous recombination repairs DNA before the cell enters mitosis (M phase). It occurs during and shortly after DNA replication, in the S and G 2 phases of the cell cycle, when sister chromatids are more easily ...
Before site specific recombination can occur, the oligonucleotide ends must be filled. The ligation of these ends generates a replication fork at each end of the transposable element. The single strand displacement causes synthesis from the un-ligated 3' hydroxyl group to form long single stranded sections adjacent to the 5' end.
In genetics, Flp-FRT recombination is a site-directed recombination technology, increasingly used to manipulate an organism's DNA under controlled conditions in vivo.It is analogous to Cre-lox recombination but involves the recombination of sequences between short flippase recognition target (FRT) sites by the recombinase flippase (Flp) derived from the 2 μ plasmid of baker's yeast ...
Gene conversion is the process by which one DNA sequence replaces a homologous sequence such that the sequences become identical after the conversion. [1] Gene conversion can be either allelic, meaning that one allele of the same gene replaces another allele, or ectopic, meaning that one paralogous DNA sequence converts another.