Search results
Results from the WOW.Com Content Network
A secondary mirror (or secondary) is the second deflecting or focusing mirror element in a reflecting telescope. Light gathered by the primary mirror is directed towards a focal point typically past the location of the secondary. [1] [2] Secondary mirrors in the form of an optically flat diagonal mirror are used to re-direct the light path in ...
Actuators of the active optics of the Gran Telescopio Canarias.. Active optics is a technology used with reflecting telescopes developed in the 1980s, [1] which actively shapes a telescope's mirrors to prevent deformation due to external influences such as wind, temperature, and mechanical stress.
Objective: The first lens or curved mirror that collects and focuses the incoming light. Primary lens: The objective of a refracting telescope. Primary mirror: The objective of a reflecting telescope. Corrector plate: A full aperture negative lens placed before a primary mirror designed to correct the optical aberrations of the mirror.
Examples of sub-aperture corrector catadioptric telescopes include the Argunov–Cassegrain telescope, the Klevtsov–Cassegrain telescope and sub-aperture corrector Maksutovs, which use as a "secondary mirror" an optical group consisting of lens elements and sometimes mirrors designed to correct aberration, as well as Jones-Bird Newtonian ...
The mirror was aperture reduced to an effective aperture of 1.3 inches by placing a disk with a hole in it between the observer's eye and the eyepiece. The telescope had a flat diagonal secondary mirror bouncing the light at a 90° angle to a Plano-convex eyepiece with a probable focal length of 4.5mm yielding his observed 35 times ...
Light path in a Cassegrain reflecting telescope. The Cassegrain reflector is a combination of a primary concave mirror and a secondary convex mirror, often used in optical telescopes and radio antennas, the main characteristic being that the optical path folds back onto itself, relative to the optical system's primary mirror entrance aperture.
A small mirror in the center of the secondary mirror prevents the instrument from seeing its own thermal emission. The f/ratio is long to have a small secondary mirror, again to minimize the telescope's thermal emission. The mirror coatings are chosen to have minimal thermal emission. The emissivity of the telescope is usually below 4%.
The Gregorian telescope consists of two concave mirrors: the primary mirror (a concave paraboloid) collects the light and brings it to a focus before the secondary mirror (a concave ellipsoid), where it is reflected back through a hole in the centre of the primary, and thence out the bottom end of the instrument, where it can be viewed with the aid of the eyepiece.