enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Impact pressure - Wikipedia

    en.wikipedia.org/wiki/Impact_pressure

    In compressible fluid dynamics, impact pressure (dynamic pressure) is the difference between total pressure (also known as pitot pressure or stagnation pressure) and static pressure. [ 1 ] [ 2 ] In aerodynamics notation, this quantity is denoted as q c {\displaystyle q_{c}} or Q c {\displaystyle Q_{c}} .

  3. Non-random two-liquid model - Wikipedia

    en.wikipedia.org/wiki/Non-random_two-liquid_model

    VLE of the mixture of chloroform and methanol plus NRTL fit and extrapolation to different pressures. The non-random two-liquid model [1] (abbreviated NRTL model) is an activity coefficient model introduced by Renon and Prausnitz in 1968 that correlates the activity coefficients of a compound with its mole fractions in the liquid phase concerned.

  4. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    Dynamic pressure is one of the terms of Bernoulli's equation, which can be derived from the conservation of energy for a fluid in motion. [1] At a stagnation point the dynamic pressure is equal to the difference between the stagnation pressure and the static pressure, so the dynamic pressure in a flow field can be measured at a stagnation point ...

  5. Maximum bubble pressure method - Wikipedia

    en.wikipedia.org/wiki/Maximum_bubble_pressure_method

    One of the useful methods to determine the dynamic surface tension is measuring the "maximum bubble pressure method" or, simply, bubble pressure method. [1] [2] Bubble pressure tensiometer produces gas bubbles (ex. air) at constant rate and blows them through a capillary which is submerged in the sample liquid and its radius is already known.

  6. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    Δp is the pressure difference between the two ends, L is the length of pipe, μ is the dynamic viscosity, Q is the volumetric flow rate, R is the pipe radius, A is the cross-sectional area of pipe. The equation does not hold close to the pipe entrance. [8]: 3 The equation fails in the limit of low viscosity, wide and/or short pipe.

  7. UNIFAC - Wikipedia

    en.wikipedia.org/wiki/UNIFAC

    The activity of a real chemical is a function of the thermodynamic state of the system, i.e. temperature and pressure. Equipped with the activity coefficients and a knowledge of the constituents and their relative amounts, phenomena such as phase separation and vapour-liquid equilibria can be calculated. UNIFAC attempts to be a general model ...

  8. Le Chatelier's principle - Wikipedia

    en.wikipedia.org/wiki/Le_Chatelier's_principle

    This is because the addition of a non-reactive gas does not change the equilibrium equation, as the inert gas appears on both sides of the chemical reaction equation. For example, if A and B react to form C and D, but X does not participate in the reaction: + + + +. While it is true that the total pressure of the system increases, the total ...

  9. Boyle's law - Wikipedia

    en.wikipedia.org/wiki/Boyle's_law

    Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant. Therefore, when the volume is halved, the pressure is doubled; and if the volume is doubled, the pressure is halved.