Search results
Results from the WOW.Com Content Network
For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x)
The user can search for elements in an associative array, and delete elements from the array. The following shows how multi-dimensional associative arrays can be simulated in standard AWK using concatenation and the built-in string-separator variable SUBSEP:
A difference list f is a single-argument function append L, which when given a linked list X as argument, returns a linked list containing L prepended to X. Concatenation of difference lists is implemented as function composition. The contents may be retrieved using f []. [1]
The Computer Language Benchmarks Game site warns against over-generalizing from benchmark data, but contains a large number of micro-benchmarks of reader-contributed code snippets, with an interface that generates various charts and tables comparing specific programming languages and types of tests. [56]
This is a list of well-known data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures.
The algorithm divides the input list into two parts: a sorted sublist of items which is built up from left to right at the front (left) of the list and a sublist of the remaining unsorted items that occupy the rest of the list. Initially, the sorted sublist is empty and the unsorted sublist is the entire input list.
For example, a two-dimensional array A with three rows and four columns might provide access to the element at the 2nd row and 4th column by the expression A[1][3] in the case of a zero-based indexing system. Thus two indices are used for a two-dimensional array, three for a three-dimensional array, and n for an n-dimensional array.
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.