Search results
Results from the WOW.Com Content Network
The determinant of a matrix is a multilinear alternating map of the rows or columns of the matrix. Properties. If any component of an alternating ...
In mathematics, an alternating sign matrix is a square matrix of 0s, 1s, and −1s such that the sum of each row and column is 1 and the nonzero entries in each row and column alternate in sign. These matrices generalize permutation matrices and arise naturally when using Dodgson condensation to compute a determinant. [ 1 ]
In linear algebra, an alternant matrix is a matrix formed by applying a finite list of functions pointwise to a fixed column of inputs.
In two dimensions, the Levi-Civita symbol is defined by: = {+ (,) = (,) (,) = (,) = The values can be arranged into a 2 × 2 antisymmetric matrix: = (). Use of the two-dimensional symbol is common in condensed matter, and in certain specialized high-energy topics like supersymmetry [1] and twistor theory, [2] where it appears in the context of 2-spinors.
Any bilinear map is a multilinear map. For example, any inner product on a -vector space is a multilinear map, as is the cross product of vectors in .; The determinant of a matrix is an alternating multilinear function of the columns (or rows) of a square matrix.
A matrix with entries in a field is invertible precisely if its determinant is nonzero. This follows from the multiplicativity of the determinant and the formula for the inverse involving the adjugate matrix mentioned below. In this event, the determinant of the inverse matrix is given by
The area of a parallelogram in terms of the determinant of the matrix of coordinates of two of its vertices. The two-dimensional Euclidean vector space is a real vector space equipped with a basis consisting of a pair of orthogonal unit vectors = [], = [].
Alternative algebras are so named because they are the algebras for which the associator is alternating.The associator is a trilinear map given by [,,] = ().By definition, a multilinear map is alternating if it vanishes whenever two of its arguments are equal.