Search results
Results from the WOW.Com Content Network
In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [ 1 ] [ 2 ] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.
By default, a Pandas index is a series of integers ascending from 0, similar to the indices of Python arrays. However, indices can use any NumPy data type, including floating point, timestamps, or strings. [4]: 112 Pandas' syntax for mapping index values to relevant data is the same syntax Python uses to map dictionary keys to values.
A GROUP BY statement in SQL specifies that a SQL SELECT statement partitions result rows into groups, based on their values in one or several columns. Typically, grouping is used to apply some sort of aggregate function for each group. [1] [2] The result of a query using a GROUP BY statement contains one row for
In statistics, a moving average (rolling average or running average or moving mean [1] or rolling mean) is a calculation to analyze data points by creating a series of averages of different selections of the full data set. Variations include: simple, cumulative, or weighted forms. Mathematically, a moving average is a type of convolution.
In time series analysis used in statistics and econometrics, autoregressive integrated moving average (ARIMA) and seasonal ARIMA (SARIMA) models are generalizations of the autoregressive moving average (ARMA) model to non-stationary series and periodic variation, respectively.
A database index is a data structure that improves the speed of data retrieval operations on a database table at the cost of additional writes and storage space to maintain the index data structure. Indexes are used to quickly locate data without having to search every row in a database table every time said table is accessed.
The MACD series is the difference between a "fast" (short period) exponential moving average (EMA), and a "slow" (longer period) EMA of the price series. The average series is an EMA of the MACD series itself. The MACD indicator thus depends on three time parameters, namely the time constants of the three EMAs.
Here, 359 is the average quarterly rental. 124 is the winter-quarter index. 445 the seasonalized winter-quarter rental. This method is also called the percentage moving average method. In this method, the original data values in the time-series are expressed as percentages of moving averages. The steps and the tabulations are given below.