Search results
Results from the WOW.Com Content Network
Each of these number systems is a positional system, but while decimal weights are powers of 10, the octal weights are powers of 8 and the hexadecimal weights are powers of 16. To convert from hexadecimal or octal to decimal, for each digit one multiplies the value of the digit by the value of its position and then adds the results. For example:
The base-2 numeral system is a positional notation with a radix of 2.Each digit is referred to as a bit, or binary digit.Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used by almost all modern computers and computer-based devices, as a preferred system of use, over various other human techniques of communication, because ...
Hexadecimal (also known as base-16 or simply hex) is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen.
This template is for quickly converting a decimal number to binary. Usage Use {{Binary|x|y}} where x is the decimal number and y is the decimal precision (positive numbers, defaults displays up to 10 digits following the binary point).
To convert a number k to decimal, use the formula that defines its base-8 representation: = = In this formula, a i is an individual octal digit being converted, where i is the position of the digit (counting from 0 for the right-most digit). Example: Convert 764 8 to decimal:
The notational system directly and logically encodes the binary representations of the digits in a hexadecimal (base sixteen) numeral. In place of the Arabic numerals 0–9 and letters A–F currently used in writing hexadecimal numerals, it presents sixteen newly devised symbols (thus evading any risk of confusion with the decimal system).
10001 is the binary, not decimal, representation of the desired result, but the most significant 1 (the "carry") cannot fit in a 4-bit binary number. In BCD as in decimal, there cannot exist a value greater than 9 (1001) per digit. To correct this, 6 (0110) is added to the total, and then the result is treated as two nibbles:
For other binary formats, the required number of decimal digits is [h] + ⌈ ⌉, where p is the number of significant bits in the binary format, e.g. 237 bits for binary256. When using a decimal floating-point format, the decimal representation will be preserved using: