enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bohr effect - Wikipedia

    en.wikipedia.org/wiki/Bohr_effect

    Hemoglobin's oxygen binding affinity (see oxygen–haemoglobin dissociation curve) is inversely related both to acidity and to the concentration of carbon dioxide. [1] That is, the Bohr effect refers to the shift in the oxygen dissociation curve caused by changes in the concentration of carbon dioxide or the pH of the environment.

  3. Oxygen–hemoglobin dissociation curve - Wikipedia

    en.wikipedia.org/wiki/Oxygenhemoglobin...

    Hemoglobin releases the bound oxygen when carbonic acid is present, as it is in the tissues. In the capillaries, where carbon dioxide is produced, oxygen bound to the hemoglobin is released into the blood's plasma and absorbed into the tissues. How much of that capacity is filled by oxygen at any time is called the oxygen saturation. Expressed ...

  4. Hemoglobin - Wikipedia

    en.wikipedia.org/wiki/Hemoglobin

    When oxygen is not bound, a very weakly bonded water molecule fills the site, forming a distorted octahedron. Even though carbon dioxide is carried by hemoglobin, it does not compete with oxygen for the iron-binding positions but is bound to the amine groups of the protein chains attached to the heme groups.

  5. Chloride shift - Wikipedia

    en.wikipedia.org/wiki/Chloride_shift

    The opposite process occurs in the pulmonary capillaries of the lungs when the PO 2 rises and PCO 2 falls, and the Haldane effect occurs (release of CO 2 from hemoglobin during oxygenation). This releases hydrogen ions from hemoglobin, increases free H + concentration within RBCs, and shifts the equilibrium towards CO 2 and water formation from ...

  6. Physiology of decompression - Wikipedia

    en.wikipedia.org/wiki/Physiology_of_decompression

    The gas in a bubble will equilibrate with the surrounding tissues and will therefore contain water vapor, oxygen, and carbon dioxide, as well as the inert gas. Vascular bubbles appear to form at the venous end of capillaries and pass through the veins to the right side of the heart, and thereafter are circulated to the lungs.

  7. Blood - Wikipedia

    en.wikipedia.org/wiki/Blood

    Hemoglobin has an oxygen binding capacity between 1.36 and 1.40 ml O 2 per gram hemoglobin, [23] which increases the total blood oxygen capacity seventyfold, [24] compared to if oxygen solely were carried by its solubility of 0.03 ml O 2 per liter blood per mm Hg partial pressure of oxygen (about 100 mm Hg in arteries).

  8. Carbonic anhydrase - Wikipedia

    en.wikipedia.org/wiki/Carbonic_anhydrase

    The opposite is true where a decrease in the concentration of carbon dioxide raises the blood pH which raises the rate of oxygen-hemoglobin binding. Relating the Bohr effect to carbonic anhydrase is simple: carbonic anhydrase speeds up the reaction of carbon dioxide reacting with water to produce hydrogen ions (protons) and bicarbonate ions.

  9. Haldane effect - Wikipedia

    en.wikipedia.org/wiki/Haldane_effect

    In the oxygen-rich capillaries of the lung, this property causes the displacement of carbon dioxide to plasma as low-oxygen blood enters the alveolus and is vital for alveolar gas exchange. The general equation for the Haldane Effect is: H + + HbO 2 ⇌ H + Hb + O 2; However, this equation is confusing as it reflects primarily the Bohr effect.