enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mutual exclusivity - Wikipedia

    en.wikipedia.org/wiki/Mutual_exclusivity

    In logic, two propositions and are mutually exclusive if it is not logically possible for them to be true at the same time; that is, () is a tautology. To say that more than two propositions are mutually exclusive, depending on the context, means either 1. "() () is a tautology" (it is not logically possible for more than one proposition to be true) or 2. "() is a tautology" (it is not ...

  3. Collectively exhaustive events - Wikipedia

    en.wikipedia.org/wiki/Collectively_exhaustive_events

    Another example of events being collectively exhaustive and mutually exclusive at same time are, event "even" (2,4 or 6) and event "odd" (1,3 or 5) in a random experiment of rolling a six-sided die. These both events are mutually exclusive because even and odd outcome can never occur at same time. The union of both "even" and "odd" events give ...

  4. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    If either event A or event B can occur but never both simultaneously, then they are called mutually exclusive events. If two events are mutually exclusive, then the probability of both occurring is denoted as () and = = If two events are mutually exclusive, then the probability of either occurring is denoted as () and = = + () = + = + ()

  5. Probability space - Wikipedia

    en.wikipedia.org/wiki/Probability_space

    Two events, A and B are said to be mutually exclusive or disjoint if the occurrence of one implies the non-occurrence of the other, i.e., their intersection is empty. This is a stronger condition than the probability of their intersection being zero. If A and B are disjoint events, then P(A ∪ B) = P(A) + P(B). This extends to a (finite or ...

  6. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  7. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    To qualify as a probability distribution, the assignment of values must satisfy the requirement that if you look at a collection of mutually exclusive events (events that contain no common results, e.g., the events {1,6}, {3}, and {2,4} are all mutually exclusive), the probability that any of these events occurs is given by the sum of the ...

  8. Complementary event - Wikipedia

    en.wikipedia.org/wiki/Complementary_event

    The event A and its complement [not A] are mutually exclusive and exhaustive. Generally, there is only one event B such that A and B are both mutually exclusive and exhaustive; that event is the complement of A. The complement of an event A is usually denoted as A′, A c, A or A.

  9. Law of total probability - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_probability

    The law of total probability is [1] a theorem that states, in its discrete case, if {: =,,, …} is a finite or countably infinite set of mutually exclusive and collectively exhaustive events, then for any event () = ()