Search results
Results from the WOW.Com Content Network
The consistent application by statisticians of Neyman and Pearson's convention of representing "the hypothesis to be tested" (or "the hypothesis to be nullified") with the expression H 0 has led to circumstances where many understand the term "the null hypothesis" as meaning "the nil hypothesis" – a statement that the results in question have ...
A possible null hypothesis is that the mean male score is the same as the mean female score: H 0: μ 1 = μ 2. where H 0 = the null hypothesis, μ 1 = the mean of population 1, and μ 2 = the mean of population 2. A stronger null hypothesis is that the two samples have equal variances and shapes of their respective distributions.
In statistical hypothesis testing, the null hypothesis and alternative hypothesis are two mutually exclusive statements. "The statement being tested in a test of statistical significance is called the null hypothesis. The test of significance is designed to assess the strength of the evidence against the null hypothesis.
An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...
We define two hypotheses the null hypothesis, and the alternative hypothesis. If we design the test such that α is the significance level - being the probability of rejecting H 0 {\displaystyle H_{0}} when H 0 {\displaystyle H_{0}} is in fact true, then the power of the test is 1 - β where β is the probability of failing to reject H 0 ...
In statistical significance testing, a one-tailed test and a two-tailed test are alternative ways of computing the statistical significance of a parameter inferred from a data set, in terms of a test statistic. A two-tailed test is appropriate if the estimated value is greater or less than a certain range of values, for example, whether a test ...
Test statistic is a quantity derived from the sample for statistical hypothesis testing. [1] A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a data-set that reduces the data to one value that can be used to perform the hypothesis test.
First, estimate the expected value μ of T under the null hypothesis, and obtain an estimate s of the standard deviation of T. Second, determine the properties of T : one tailed or two tailed. For Null hypothesis H 0: μ≥μ 0 vs alternative hypothesis H 1: μ<μ 0, it is lower/left-tailed (one tailed).