enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Significant figures - Wikipedia

    en.wikipedia.org/wiki/Significant_figures

    For example, if 1254 is rounded to 2 significant figures, then 5 and 4 are replaced to 0 so that it will be 1300. For a number with the decimal point in rounding, remove the digits after the n digit. For example, if 14.895 is rounded to 3 significant figures, then the digits after 8 are removed so that it will be 14.9.

  3. Unit in the last place - Wikipedia

    en.wikipedia.org/wiki/Unit_in_the_last_place

    Here we start with 0 in single precision (binary32) and repeatedly add 1 until the operation does not change the value. Since the significand for a single-precision number contains 24 bits, the first integer that is not exactly representable is 2 24 +1, and this value rounds to 2 24 in round to nearest, ties to even. Thus the result is equal to ...

  4. Rounding - Wikipedia

    en.wikipedia.org/wiki/Rounding

    As a general rule, rounding is idempotent; [2] i.e., once a number has been rounded, rounding it again to the same precision will not change its value. Rounding functions are also monotonic; i.e., rounding two numbers to the same absolute precision will not exchange their order (but may give the same value).

  5. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr or 3 σ, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean ...

  6. Talk:Significant figures - Wikipedia

    en.wikipedia.org/wiki/Talk:Significant_figures

    Significant figures is a rough approximation to uncertainty, and commonly rounded to integers. One decimal digit is worth 3.32 bits. Note that the actual precision can vary, such that 100 has two significant digits and 999 has 2.9996 digits. Sometimes there is need to be more accurate than the rounded value, other times not.

  7. Catastrophic cancellation - Wikipedia

    en.wikipedia.org/wiki/Catastrophic_cancellation

    In IEEE 754 binary64 arithmetic, evaluating the alternative factoring (+) gives the correct result exactly (with no rounding), but evaluating the naive expression gives the floating-point number = _, of which less than half the digits are correct and the other (underlined) digits reflect the missing terms +, lost due to rounding when ...

  8. Pairwise summation - Wikipedia

    en.wikipedia.org/wiki/Pairwise_summation

    Pairwise summation is the default summation algorithm in NumPy [9] and the Julia technical-computing language, [10] where in both cases it was found to have comparable speed to naive summation (thanks to the use of a large base case).

  9. Guard digit - Wikipedia

    en.wikipedia.org/wiki/Guard_digit

    After padding the second number (i.e., ) with two s, the bit after is the guard digit, and the bit after is the round digit. The result after rounding is 2.37 {\displaystyle 2.37} as opposed to 2.36 {\displaystyle 2.36} , without the extra bits (guard and round bits), i.e., by considering only 0.02 + 2.34 = 2.36 {\displaystyle 0.02+2.34=2.36} .