enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator.

  3. Bias (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bias_(statistics)

    Statistical bias, in the mathematical field of statistics, is a systematic tendency in which the methods used to gather data and generate statistics present an inaccurate, skewed or biased depiction of reality. Statistical bias exists in numerous stages of the data collection and analysis process, including: the source of the data, the methods ...

  4. Estimator - Wikipedia

    en.wikipedia.org/wiki/Estimator

    Bias is a property of the estimator, not of the estimate. Often, people refer to a "biased estimate" or an "unbiased estimate", but they really are talking about an "estimate from a biased estimator", or an "estimate from an unbiased estimator". Also, people often confuse the "error" of a single estimate with the "bias" of an estimator.

  5. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the calculation equals the true value.

  6. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    However, a biased estimator may have lower MSE; see estimator bias. In statistical modelling the MSE can represent the difference between the actual observations and the observation values predicted by the model. In this context, it is used to determine the extent to which the model fits the data as well as whether removing some explanatory ...

  7. Ratio estimator - Wikipedia

    en.wikipedia.org/wiki/Ratio_estimator

    Under simple random sampling the bias is of the order O( n −1). An upper bound on the relative bias of the estimate is provided by the coefficient of variation (the ratio of the standard deviation to the mean). [2] Under simple random sampling the relative bias is O( n −1/2).

  8. Efficiency (statistics) - Wikipedia

    en.wikipedia.org/wiki/Efficiency_(statistics)

    Efficiency in statistics is important because they allow one to compare the performance of various estimators. Although an unbiased estimator is usually favored over a biased one, a more efficient biased estimator can sometimes be more valuable than a less efficient unbiased estimator.

  9. Forecast bias - Wikipedia

    en.wikipedia.org/wiki/Forecast_bias

    A forecast bias occurs when there are consistent differences between actual outcomes and previously generated forecasts of those quantities; that is: forecasts may have a general tendency to be too high or too low. A normal property of a good forecast is that it is not biased.