enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator.

  3. Bias (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bias_(statistics)

    Detection bias occurs when a phenomenon is more likely to be observed for a particular set of study subjects. For instance, the syndemic involving obesity and diabetes may mean doctors are more likely to look for diabetes in obese patients than in thinner patients, leading to an inflation in diabetes among obese patients because of skewed detection efforts.

  4. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the calculation equals the true value.

  5. Estimator - Wikipedia

    en.wikipedia.org/wiki/Estimator

    The bias of ^ is a function of the true value of so saying that the bias of ^ is means that for every the bias of ^ is . There are two kinds of estimators: biased estimators and unbiased estimators. Whether an estimator is biased or not can be identified by the relationship between E ⁡ ( θ ^ ) − θ {\displaystyle \operatorname {E ...

  6. Ratio estimator - Wikipedia

    en.wikipedia.org/wiki/Ratio_estimator

    Under simple random sampling the bias is of the order O( n −1). An upper bound on the relative bias of the estimate is provided by the coefficient of variation (the ratio of the standard deviation to the mean). [2] Under simple random sampling the relative bias is O( n −1/2).

  7. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled).

  8. Efficiency (statistics) - Wikipedia

    en.wikipedia.org/wiki/Efficiency_(statistics)

    Efficiency in statistics is important because they allow one to compare the performance of various estimators. Although an unbiased estimator is usually favored over a biased one, a more efficient biased estimator can sometimes be more valuable than a less efficient unbiased estimator.

  9. Forecast bias - Wikipedia

    en.wikipedia.org/wiki/Forecast_bias

    A typical measure of bias of forecasting procedure is the arithmetic mean or expected value of the forecast errors, but other measures of bias are possible. For example, a median-unbiased forecast would be one where half of the forecasts are too low and half too high: see Bias of an estimator .