Search results
Results from the WOW.Com Content Network
17 indivisible camels. The 17-animal inheritance puzzle is a mathematical puzzle involving unequal but fair allocation of indivisible goods, usually stated in terms of inheritance of a number of large animals (17 camels, 17 horses, 17 elephants, etc.) which must be divided in some stated proportion among a number of beneficiaries.
The particular case of n = 2 was already solved by Hilbert in 1893. [5] The general problem was solved in the affirmative, in 1927, by Emil Artin, [6] for positive semidefinite functions over the reals or more generally real-closed fields. An algorithmic solution was found by Charles Delzell in 1984. [7]
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Make an orderly list [10] Eliminate possibilities [11] Use symmetry [12] Consider special cases [13] Use direct reasoning; Solve an equation [14] Also suggested: Look for a pattern [15] Draw a picture [16] Solve a simpler problem [17] Use a model [18] Work backward [19] Use a formula [20] Be creative [21]
The 1998 book Proofs from THE BOOK, inspired by Erdős, is a collection of particularly succinct and revelatory mathematical arguments. Some examples of particularly elegant results included are Euclid's proof that there are infinitely many prime numbers and the fast Fourier transform for harmonic analysis .
All India Secondary School Examination, commonly known as the class 10th board exam, is a centralized public examination that students in schools affiliated with the Central Board of Secondary Education, primarily in India but also in other Indian-patterned schools affiliated to the CBSE across the world, taken at the end of class 10. The board ...
One of the widely used types of impossibility proof is proof by contradiction.In this type of proof, it is shown that if a proposition, such as a solution to a particular class of equations, is assumed to hold, then via deduction two mutually contradictory things can be shown to hold, such as a number being both even and odd or both negative and positive.
In the general case, constraint problems can be much harder, and may not be expressible in some of these simpler systems. "Real life" examples include automated planning, [6] [7] lexical disambiguation, [8] [9] musicology, [10] product configuration [11] and resource allocation. [12] The existence of a solution to a CSP can be viewed as a ...