Search results
Results from the WOW.Com Content Network
In computer science and mathematical logic, a proof assistant or interactive theorem prover is a software tool to assist with the development of formal proofs by human–machine collaboration. This involves some sort of interactive proof editor, or other interface , with which a human can guide the search for proofs, the details of which are ...
The program is available for the Mac, Unix, and Windows operating systems. It is written in the Java programming language and released under the GNU GPL. It is claimed that Jape is the most popular program for "computer-assisted logic teaching" that involves exercises in developing proofs in mathematical logic. [3]
MCL: Model Checking Language; Alternation-Free Modal μ-calculus extended with user-friendly regular expressions and value-passing constructs; subsumes CTL and LTL. mCRL2 mu-calculus: Kozen's propositional modal μ-calculus (excluding atomic propositions), extended with: data-depended processes, quantification over data types, multi-actions ...
Z3 was developed in the Research in Software Engineering (RiSE) group at Microsoft Research Redmond and is targeted at solving problems that arise in software verification and program analysis. Z3 supports arithmetic, fixed-size bit-vectors, extensional arrays, datatypes, uninterpreted functions, and quantifiers .
ACL2 (A Computational Logic for Applicative Common Lisp) is a software system consisting of a programming language, an extensible theory in a first-order logic, and an automated theorem prover. ACL2 is designed to support automated reasoning in inductive logical theories, mostly for software and hardware verification .
The Isabelle [a] automated theorem prover is a higher-order logic (HOL) theorem prover, written in Standard ML and Scala.As a Logic for Computable Functions (LCF) style theorem prover, it is based on a small logical core (kernel) to increase the trustworthiness of proofs without requiring, yet supporting, explicit proof objects.
Metamath is a formal language and an associated computer program (a proof assistant) for archiving and verifying mathematical proofs. [2] Several databases of proved theorems have been developed using Metamath covering standard results in logic, set theory, number theory, algebra, topology and analysis, among others.
An interactive proof session in CoqIDE, showing the proof script on the left and the proof state on the right. Coq is an interactive theorem prover first released in 1989. It allows for expressing mathematical assertions, mechanically checks proofs of these assertions, helps find formal proofs, and extracts a certified program from the constructive proof of its formal specification.