Search results
Results from the WOW.Com Content Network
DnaB helicase is an enzyme in bacteria which opens the replication fork during DNA replication.Although the mechanism by which DnaB both couples ATP hydrolysis to translocation along DNA and denatures the duplex is unknown, a change in the quaternary structure of the protein involving dimerisation of the N-terminal domain has been observed and may occur during the enzymatic cycle. [1]
DNA helicases are frequently attracted to regions of DNA damage and are essential for cellular DNA replication, recombination, repair, and transcription. Chemical manipulation of their molecular processes can change the rate at which cancer cells divide, as well as, the efficiency of transactions and cellular homeostasis.
Stalled replication forks often lead to DNA breakage, further implicating the importance of unimpaired replication forks on genome integrity. [6] RRM3 helps cells progress through stalled replication forks, although this is a mechanism that is still poorly understood. [6] Rrm3p is one of many helicase proteins in Saccharomyces cerevisiae. Rrm3p ...
ATP-dependent DNA helicase Q1 is an enzyme that in humans is encoded by the RECQL gene. [5] [6] [7] The protein encoded by this gene is a member of the RecQ DNA helicase family. DNA helicases are enzymes involved in various types of DNA repair, including mismatch repair, nucleotide excision repair and direct repair.
DNA is a duplex formed by two anti-parallel strands. Following Meselson-Stahl, the process of DNA replication is semi-conservative, whereby during replication the original DNA duplex is separated into two daughter strands (referred to as the leading and lagging strand templates). Each daughter strand becomes part of a new DNA duplex.
At each replication fork, the primosome is utilized once on the leading strand of DNA and repeatedly, initiating each Okazaki fragment, on the lagging DNA strand. Initially the complex formed by PriA, PriB, and PriC binds to DNA. Then the DnaB-DnaC helicase complex attaches along with DnaT. This structure is referred to as the pre-primosome.
The minichromosome maintenance protein complex (MCM) is a DNA helicase essential for genomic DNA replication. Eukaryotic MCM consists of six gene products, Mcm2–7, which form a heterohexamer. Eukaryotic MCM consists of six gene products, Mcm2–7, which form a heterohexamer.
The replication fork is a structure that forms within the long helical DNA during DNA replication. It is produced by enzymes called helicases that break the hydrogen bonds that hold the DNA strands together in a helix.