Search results
Results from the WOW.Com Content Network
96% confidence bands around a local polynomial fit to botanical data. A confidence band is used in statistical analysis to represent the uncertainty in an estimate of a curve or function based on limited or noisy data. Similarly, a prediction band is used to represent the uncertainty about the value of a new data-point on the curve, but subject ...
Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".
Moreover, the confidence intervals found hold for a long-term prediction. For predictions at a shorter run, the confidence intervals U − L and T U − T L may actually be wider. Together with the limited certainty (less than 100%) used in the t−test , this explains why, for example, a 100-year rainfall might occur twice in 10 years.
A prediction interval estimates the interval containing future samples with some confidence, γ. Prediction intervals can be used for both Bayesian and frequentist contexts. These intervals are typically used in regression data sets, but prediction intervals are not used for extrapolation beyond the previous data's experimentally controlled ...
In the social sciences, a result may be considered statistically significant if its confidence level is of the order of a two-sigma effect (95%), while in particle physics and astrophysics, there is a convention of requiring statistical significance of a five-sigma effect (99.99994% confidence) to qualify as a discovery. [3]
With the binomial distribution one can obtain a prediction interval. Such an interval also estimates the risk of failure, i.e. the chance that the predicted event still remains outside the confidence interval. The confidence or risk analysis may include the return period T=1/Pe as is done in hydrology.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In statistical prediction, the coverage probability is the probability that a prediction interval will include an out-of-sample value of the random variable. The coverage probability can be defined as the proportion of instances where the interval surrounds an out-of-sample value as assessed by long-run frequency. [2]