enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geometric mean - Wikipedia

    en.wikipedia.org/wiki/Geometric_mean

    Thus, the geometric mean provides a summary of the samples whose exponent best matches the exponents of the samples (in the least squares sense). In computer implementations, naïvely multiplying many numbers together can cause arithmetic overflow or underflow. Calculating the geometric mean using logarithms is one way to avoid this problem.

  3. List of price index formulas - Wikipedia

    en.wikipedia.org/wiki/List_of_price_index_formulas

    Is the geometric mean of the Carli and the harmonic price indexes. [9] In 1922 Fisher wrote that this and the Jevons were the two best unweighted indexes based on Fisher's test approach to index number theory. [10] =

  4. Arithmetic–geometric mean - Wikipedia

    en.wikipedia.org/wiki/Arithmetic–geometric_mean

    The geometric–harmonic mean GH can be calculated using analogous sequences of geometric and harmonic means, and in fact GH(x, y) = 1/M(1/x, 1/y) = xy/M(x, y). [12] The arithmetic–harmonic mean is equivalent to the geometric mean.

  5. Weighted geometric mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_geometric_mean

    In statistics, the weighted geometric mean is a generalization of the geometric mean using the weighted arithmetic mean. ... it is calculated as: [1] ...

  6. AM–GM inequality - Wikipedia

    en.wikipedia.org/wiki/AM–GM_inequality

    The arithmetic mean, or less precisely the average, of a list of n numbers x 1, x 2, . . . , x n is the sum of the numbers divided by n: + + +. The geometric mean is similar, except that it is only defined for a list of nonnegative real numbers, and uses multiplication and a root in place of addition and division:

  7. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    This estimate is sometimes referred to as the "geometric CV" (GCV), [19] [20] due to its use of the geometric variance. Contrary to the arithmetic standard deviation, the arithmetic coefficient of variation is independent of the arithmetic mean. The parameters μ and σ can be obtained, if the arithmetic mean and the arithmetic variance are known:

  8. Generalized mean - Wikipedia

    en.wikipedia.org/wiki/Generalized_mean

    The power mean could be generalized further to the generalized f-mean: (, …,) = (= ()) This covers the geometric mean without using a limit with f(x) = log(x). The power mean is obtained for f(x) = x p. Properties of these means are studied in de Carvalho (2016).

  9. QM-AM-GM-HM inequalities - Wikipedia

    en.wikipedia.org/wiki/QM-AM-GM-HM_Inequalities

    Then the length of GF can be calculated to be the harmonic mean, CF to be the geometric mean, DE to be the arithmetic mean, and CE to be the quadratic mean. The inequalities then follow easily by the Pythagorean theorem.