enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetric function - Wikipedia

    en.wikipedia.org/wiki/Symmetric_function

    Given any function in variables with values in an abelian group, a symmetric function can be constructed by summing values of over all permutations of the arguments. . Similarly, an anti-symmetric function can be constructed by summing over even permutations and subtracting the sum over odd permut

  3. Symmetry in mathematics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_mathematics

    Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. [1] Given a structured object X of any sort, a symmetry is a mapping of the object onto itself which preserves the structure.

  4. Symmetry - Wikipedia

    en.wikipedia.org/wiki/Symmetry

    Symmetry in physics has been generalized to mean invariance—that is, lack of change—under any kind of transformation, for example arbitrary coordinate transformations. [17] This concept has become one of the most powerful tools of theoretical physics , as it has become evident that practically all laws of nature originate in symmetries.

  5. Commutative property - Wikipedia

    en.wikipedia.org/wiki/Commutative_property

    When a commutative operation is written as a binary function = (,), then this function is called a symmetric function, and its graph in three-dimensional space is symmetric across the plane =. For example, if the function f is defined as f ( x , y ) = x + y {\displaystyle f(x,y)=x+y} then f {\displaystyle f} is a symmetric function.

  6. Symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Symmetric_polynomial

    Symmetric polynomials are important to linear algebra, representation theory, and Galois theory. They are also important in combinatorics, where they are mostly studied through the ring of symmetric functions, which avoids having to carry around a fixed number of variables all the time.

  7. Symmetrization - Wikipedia

    en.wikipedia.org/wiki/Symmetrization

    Thus, away from 2, meaning if 2 is invertible, such as for the real numbers, one can divide by 2 and express every function as a sum of a symmetric function and an anti-symmetric function. The symmetrization of a symmetric map is its double, while the symmetrization of an alternating map is zero; similarly, the antisymmetrization of a symmetric ...

  8. Symmetrically continuous function - Wikipedia

    en.wikipedia.org/wiki/Symmetrically_continuous...

    Also, symmetric differentiability implies symmetric continuity, but the converse is not true just like usual continuity does not imply differentiability. The set of the symmetrically continuous functions, with the usual scalar multiplication can be easily shown to have the structure of a vector space over R {\displaystyle \mathbb {R ...

  9. Symmetric probability distribution - Wikipedia

    en.wikipedia.org/wiki/Symmetric_probability...

    In statistics, a symmetric probability distribution is a probability distribution—an assignment of probabilities to possible occurrences—which is unchanged when its probability density function (for continuous probability distribution) or probability mass function (for discrete random variables) is reflected around a vertical line at some ...