Search results
Results from the WOW.Com Content Network
In biochemistry, a Ramachandran plot (also known as a Rama plot, a Ramachandran diagram or a [φ,ψ] plot), originally developed in 1963 by G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan, [1] is a way to visualize energetically allowed regions for backbone dihedral angles ( also called as torsional angles , phi and psi angles ) ψ ...
The description of a protein three dimensional structure as a network of hydrogen bonding interactions (HB plot) [12] was introduced as a tool for exploring protein structure and function. By analyzing the network of tertiary interactions, the possible spread of information within a protein can be investigated.
A hydrophilicity plot is a quantitative analysis of the degree of hydrophobicity or hydrophilicity of amino acids of a protein. It is used to characterize or identify possible structure or domains of a protein. The plot has amino acid sequence of a protein on its x-axis, and degree of hydrophobicity and hydrophilicity on its y-axis.
The Cα-atoms alternate above and below the sheet in a pleated structure, and the R side groups of the amino acids alternate above and below the pleats. The Φ and Ψ angles of the amino acids in sheets vary considerably in one region of the Ramachandran plot. It is more difficult to predict the location of β-sheets than of α-helices.
A Ramachandran plot (also known as a Ramachandran diagram or a [φ,ψ] plot), originally developed in 1963 by G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan, [7] is a way to visualize energetically allowed regions for backbone dihedral angles ψ against φ of amino acid residues in protein structure.
Coot Ramachandran plot validation tool Coot density fit validation tool. In macromolecular crystallography, the observed data is often weak and the observation-to-parameter ratio near 1. As a result, it is possible to build an incorrect atomic model into the electron density in some cases. To avoid this, careful validation is required.
Backbone-dependent rotamer library for serine.Each plot shows the population of the χ 1 rotamers of serine as a function of the backbone dihedral angles φ and ψ. In biochemistry, a backbone-dependent rotamer library provides the frequencies, mean dihedral angles, and standard deviations of the discrete conformations (known as rotamers) of the amino acid side chains in proteins as a function ...
Gopalasamudram Narayanan Ramachandran, or G.N. Ramachandran, FRS (8 October 1922 – 7 April 2001) [1] was an Indian physicist who was known for his work that led to his creation of the Ramachandran plot for understanding peptide structure. He was the first to propose a triple-helical model for the structure of collagen. [1]