Search results
Results from the WOW.Com Content Network
The feature that separates pointers from other kinds of reference is that a pointer's value is meant to be interpreted as a memory address, which is a rather low-level concept. References serve as a level of indirection: A pointer's value determines which memory address (that is, which datum) is to be used in a calculation.
Many languages have explicit pointers or references. Reference types differ from these in that the entities they refer to are always accessed via references; for example, whereas in C++ it's possible to have either a std:: string and a std:: string *, where the former is a mutable string and the latter is an explicit pointer to a mutable string (unless it's a null pointer), in Java it is only ...
On many common platforms, this use of pointer punning can create problems if different pointers are aligned in machine-specific ways. Furthermore, pointers of different sizes can alias accesses to the same memory, causing problems that are unchecked by the compiler. Even when data size and pointer representation match, however, compilers can ...
In computer programming, a reference is a value that enables a program to indirectly access a particular datum, such as a variable's value or a record, in the computer's memory or in some other storage device. The reference is said to refer to the datum, and accessing the datum is called dereferencing the reference. A reference is distinct from ...
In the C++ programming language, a reference is a simple reference datatype that is less powerful but safer than the pointer type inherited from C.The name C++ reference may cause confusion, as in computer science a reference is a general concept datatype, with pointers and C++ references being specific reference datatype implementations.
Function pointers allow different code to be executed at runtime. They can also be passed to a function to enable callbacks. Function pointers are supported by third-generation programming languages (such as PL/I, COBOL, Fortran, [1] dBASE dBL [clarification needed], and C) and object-oriented programming languages (such as C++, C#, and D). [2]
In computer science, a tagged pointer is a pointer (concretely a memory address) with additional data associated with it, such as an indirection bit or reference count.This additional data is often "folded" into the pointer, meaning stored inline in the data representing the address, taking advantage of certain properties of memory addressing.
To expose dangling pointer errors, one common programming technique is to set pointers to the null pointer or to an invalid address once the storage they point to has been released. When the null pointer is dereferenced (in most languages) the program will immediately terminate—there is no potential for data corruption or unpredictable behavior.